

Finite Automata

Part Three

From Last Time

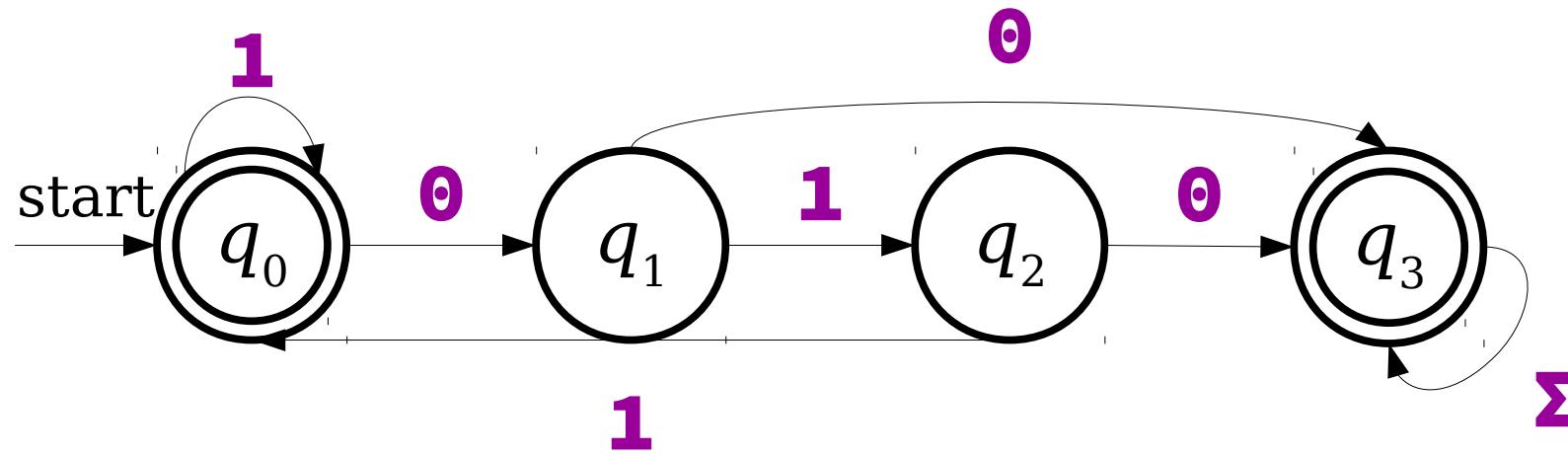
NFAs and DFAs

- **DFAs** (Deterministic Finite Automata)
 - are machines for accepting/rejecting strings.
 - The language of a DFA is the set of strings it accepts.
 - The set of languages for which there exists a DFA is called the **Regular Languages**.
- **NFAs** (Nondeterministic Finite Automata)
 - are DFAs but with some bonus superpowers of having more options for how we move from state to state.

New Stuff!

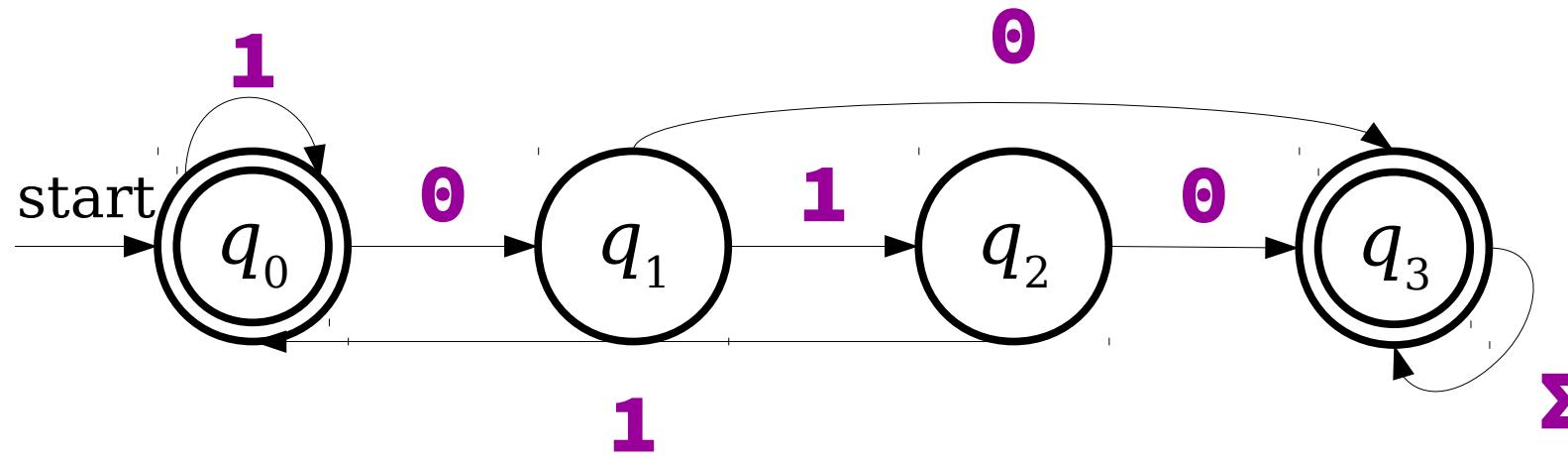
Table Representation of DFAs

Tabular DFAs



	0	1
q_0		
q_1		
q_2		
q_3		

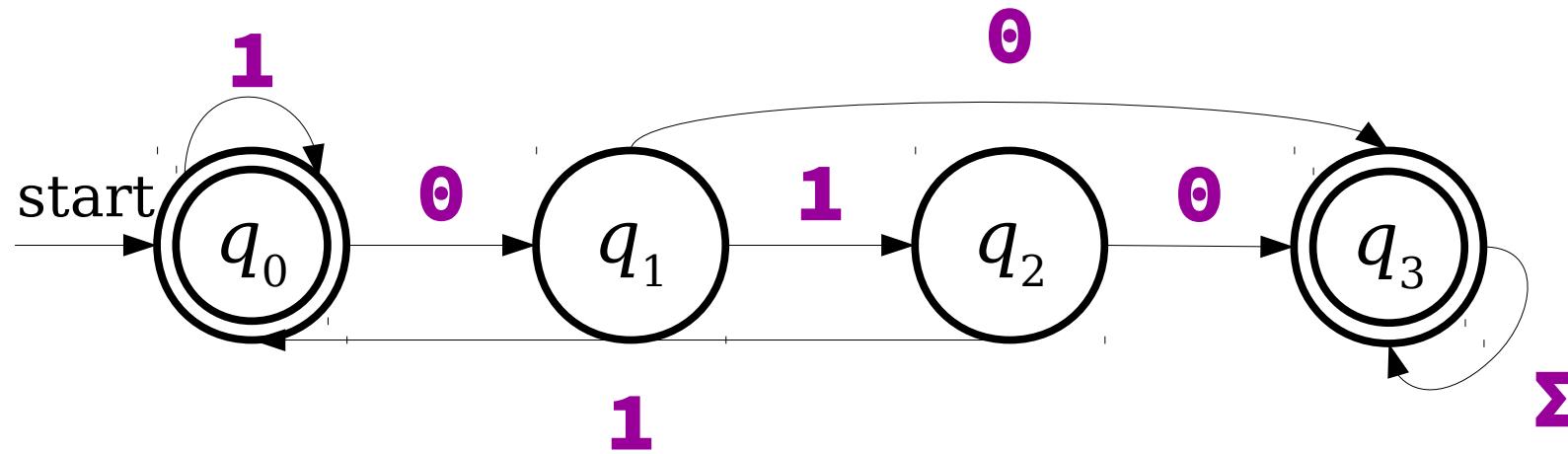
Tabular DFAs



Since this is the first row, it's the start state.

	0	1
q_0	q_1	q_0
q_1		
q_2		
q_3		

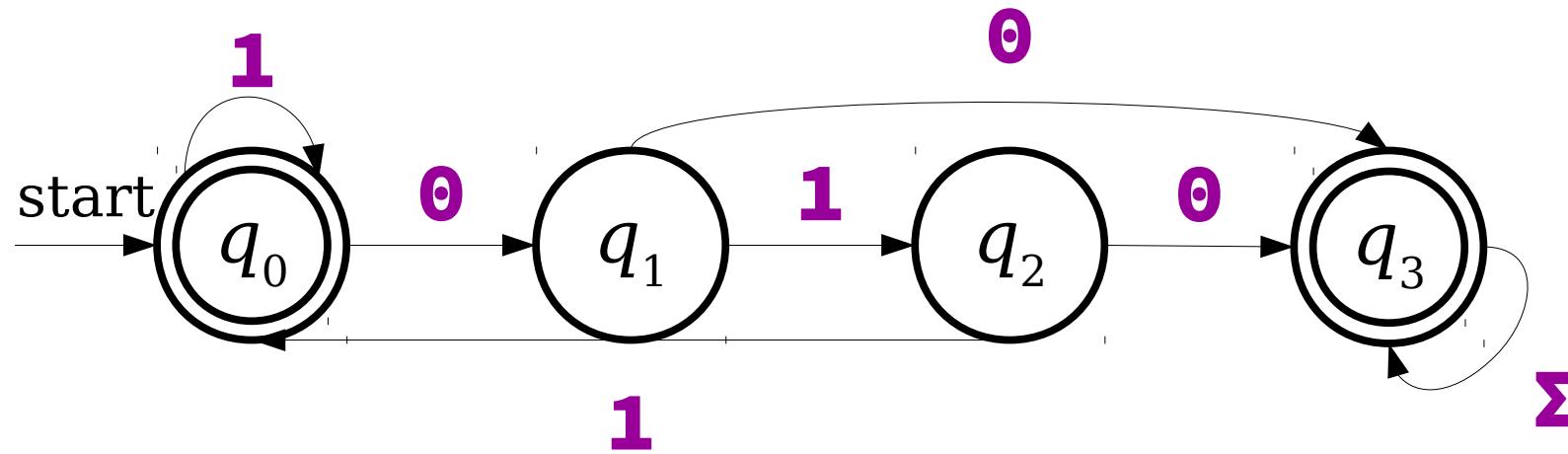
Tabular DFAs



Question:
What goes in the q_1 row of the table?

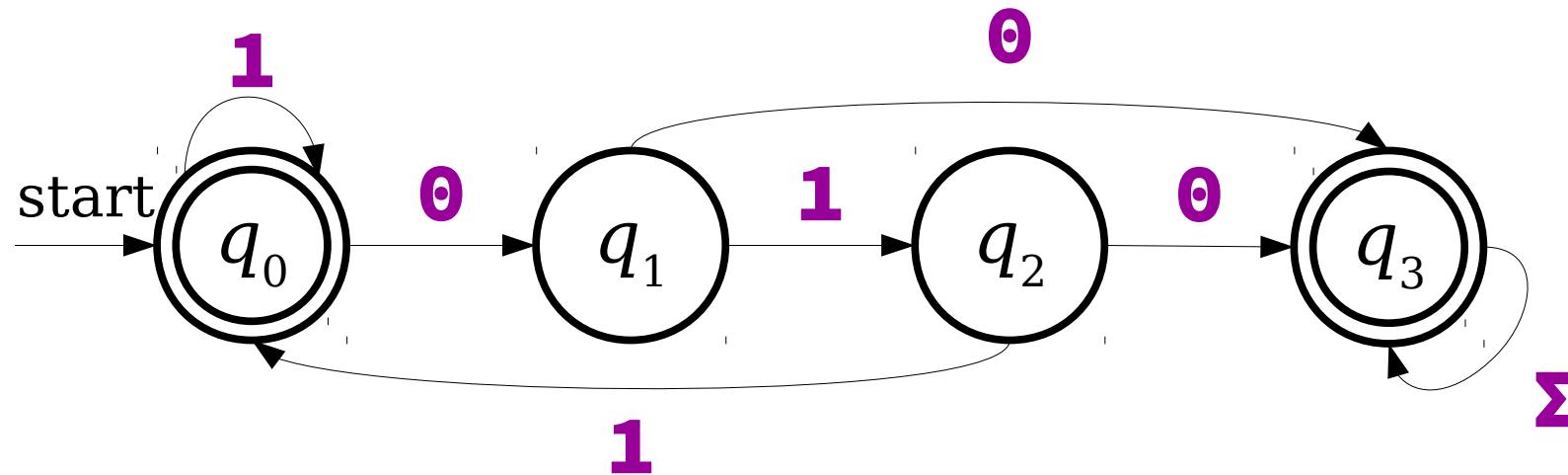
	0	1
q_0	q_1	q_0
q_1		
q_2		
q_3		

Tabular DFAs



	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
q_3		

Tabular DFAs



(A)

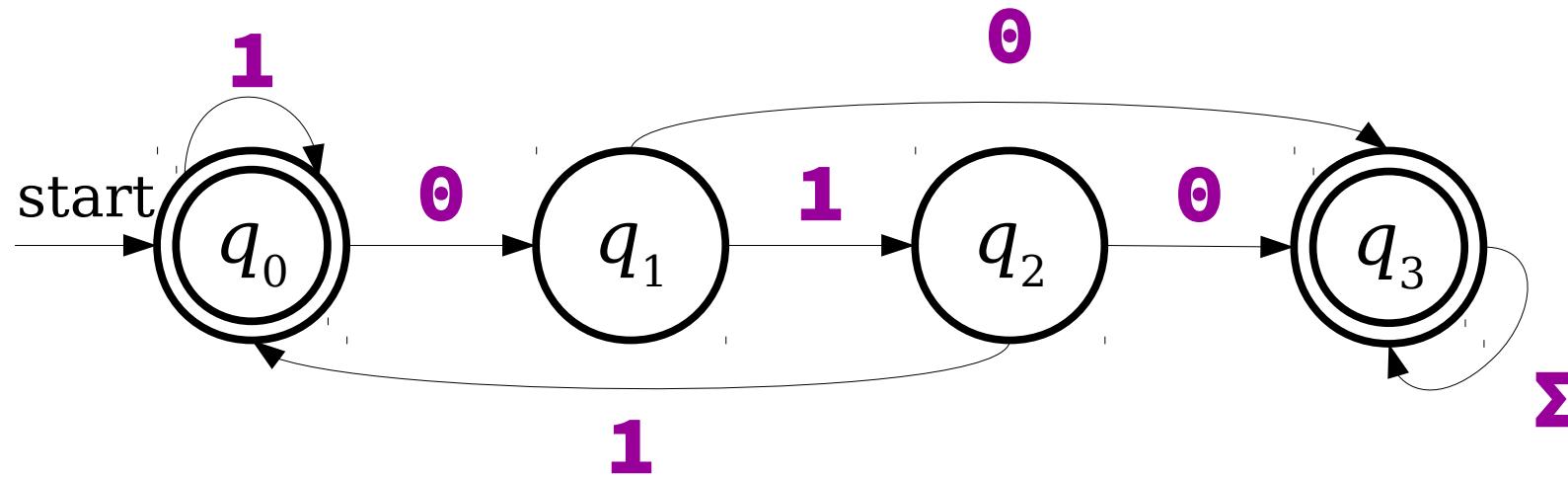
	0	1	Σ
q_0	q_1	q_0	-
q_1	q_3	q_2	-
q_2	q_3	q_0	-
q_3	-	-	q_3

Question:
How should we
complete the table?
Go to
pollev.com/cs103spr25

(B)

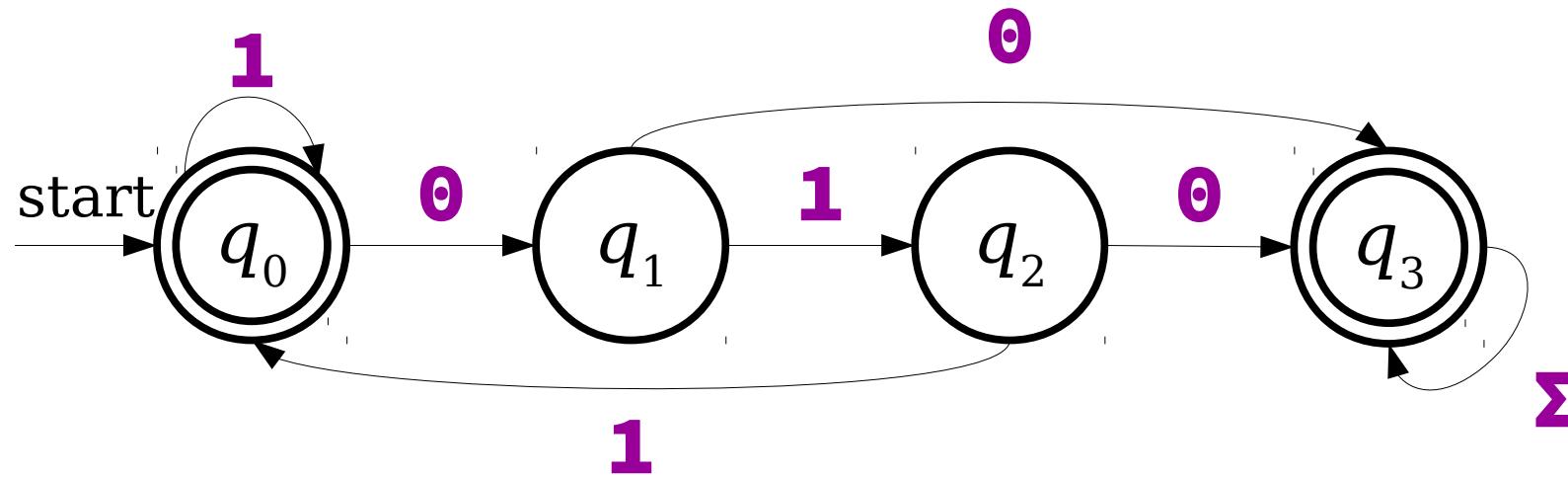
	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
q_3	q_3	q_3

Tabular DFAs



	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
q_3	q_3	q_3

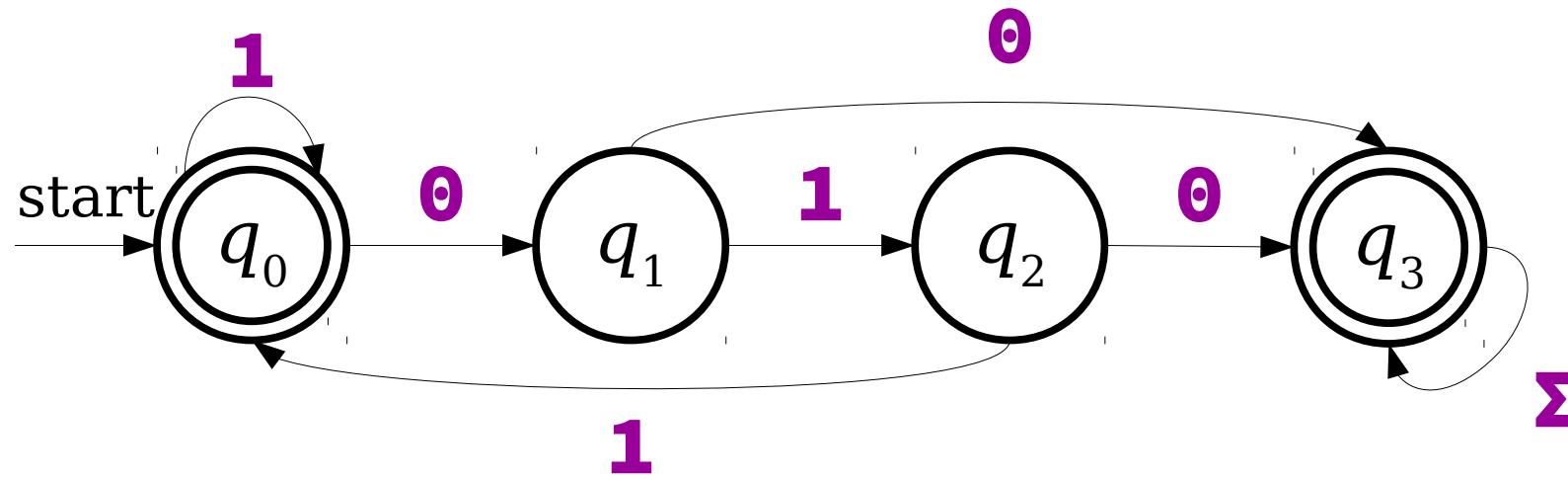
Tabular DFAs



These stars indicate accepting states.

	0	1
$*q_0$	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
$*q_3$	q_3	q_3

Tabular DFAs



	0	1
$*q_0$	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
$*q_3$	q_3	q_3

NFAs and DFAs

- We know that any language for which there exists a DFA can also be recognized by an NFA.
- Why?
 - Every DFA is essentially already an NFA!
 - (No requirement that a given NFA use every NFA superpower available)

NFAs and DFAs

- We know that any language for which there exists a DFA can also be recognized by an NFA.
- Why?
 - Every DFA is essentially already an NFA!
 - (No requirement that a given NFA use every NFA superpower available)
 - **Question:** Can any language recognized by an NFA also be recognized by a DFA?

NFAs and DFAs

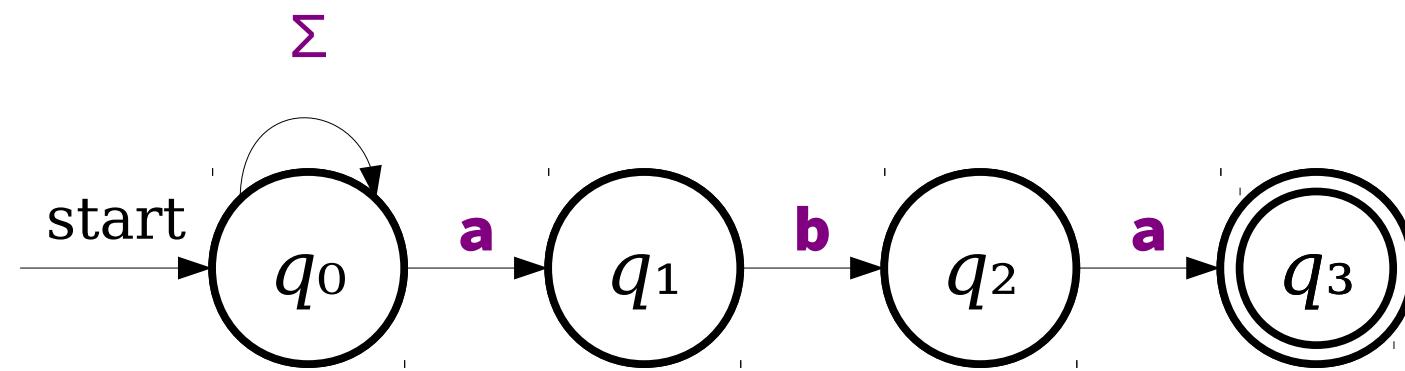
- We know that any language for which there exists a DFA can also be recognized by an NFA.
- Why?
 - Every DFA is essentially already an NFA!
 - (No requirement that a given NFA use every NFA superpower available)
- **Question:** Can any language recognized by an NFA also be recognized by a DFA?
- Surprisingly, the answer is **yes!**

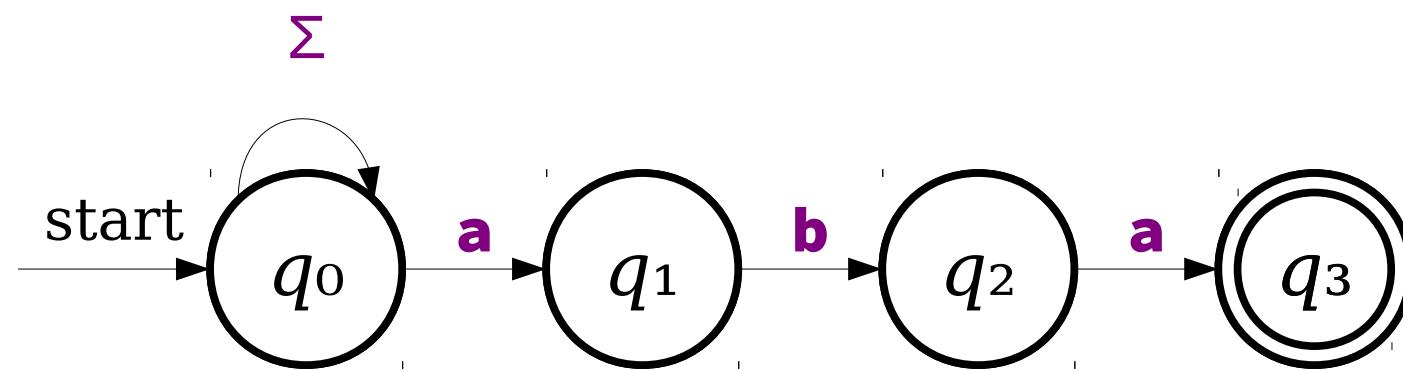
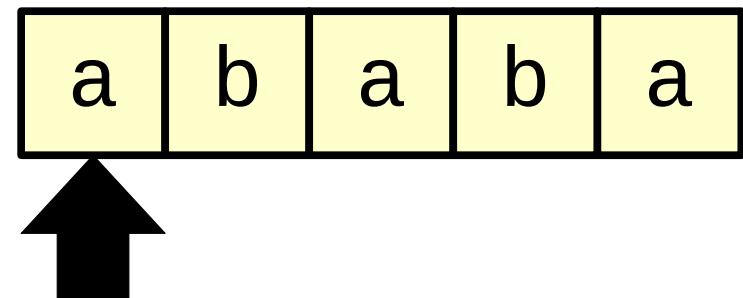
NFAs and DFAs

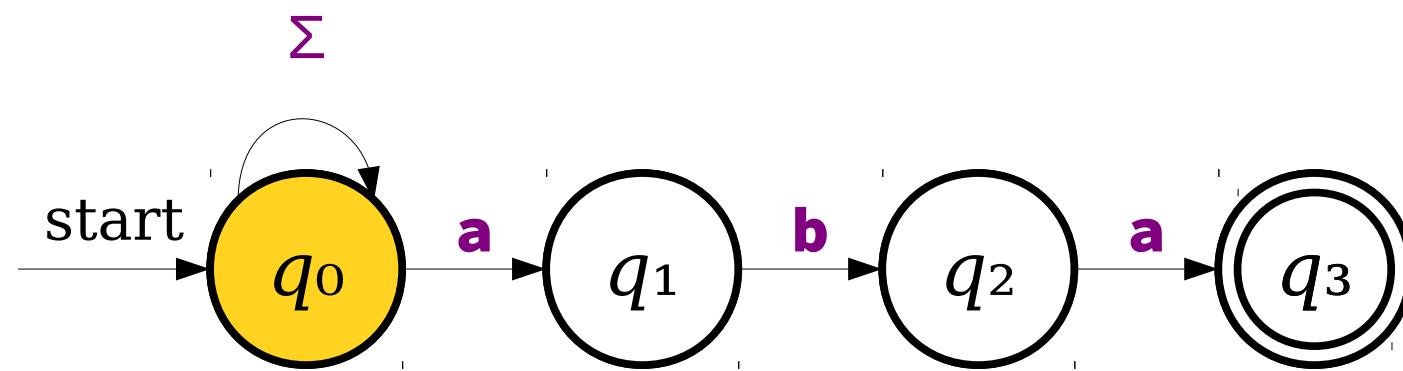
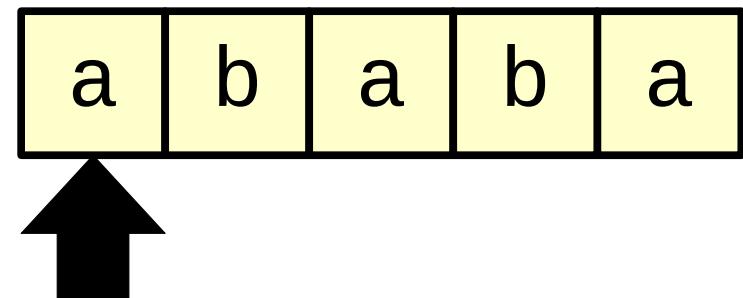
- **Question:** Can any language recognized by an NFA also be recognized by a DFA?
- Surprisingly, the answer is **yes!**
 - Theorem: **For all languages L**, if L is recognized by an NFA, then there exists a DFA that also recognizes L.
 - To prove this, we need to:
 - **Pick an arbitrary language L**, assuming an NFA exists for L
 - **Want to show** there exists a DFA for L (describe how we would construct a DFA with the same language, in a generalizable way)
 - For the next few slides, we'll ponder how to approach that...

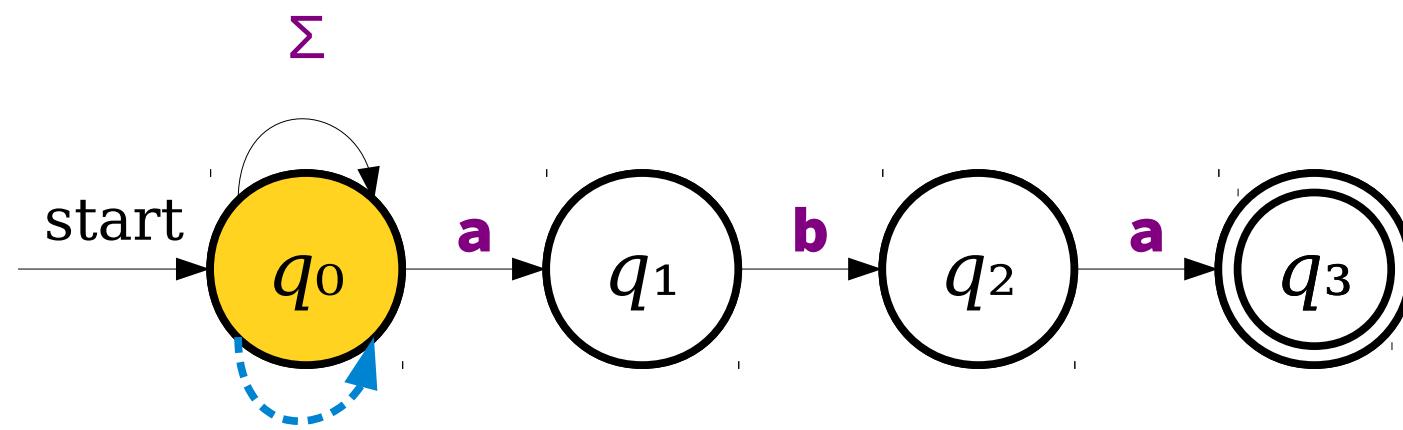
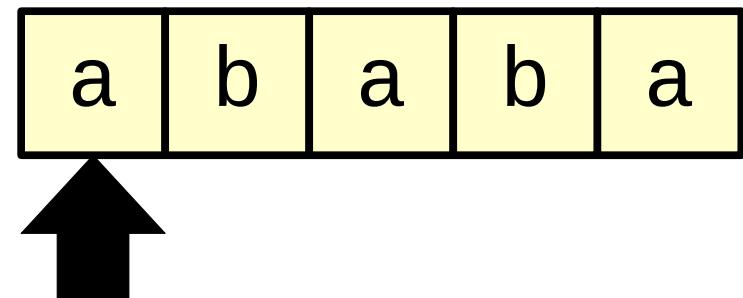
Thought Experiment:

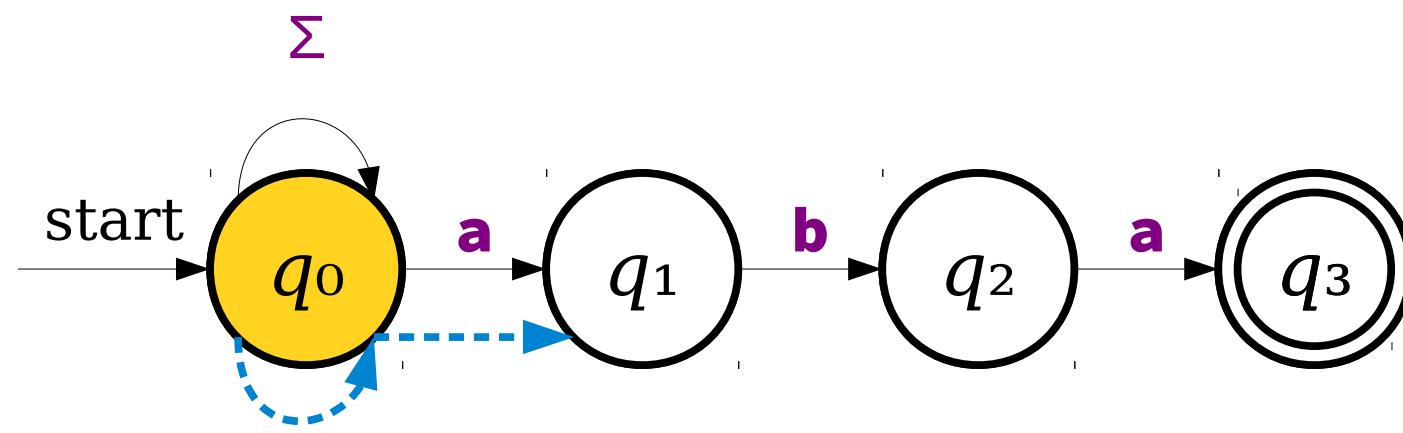
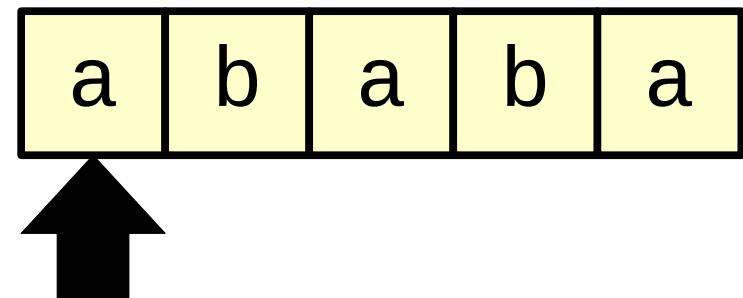
How would you simulate an NFA in software?

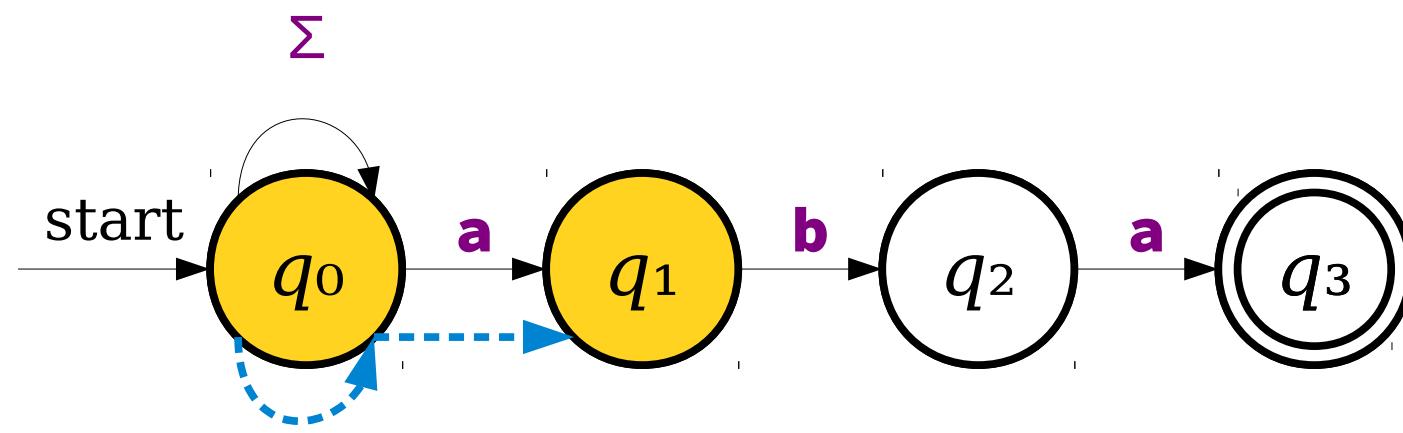
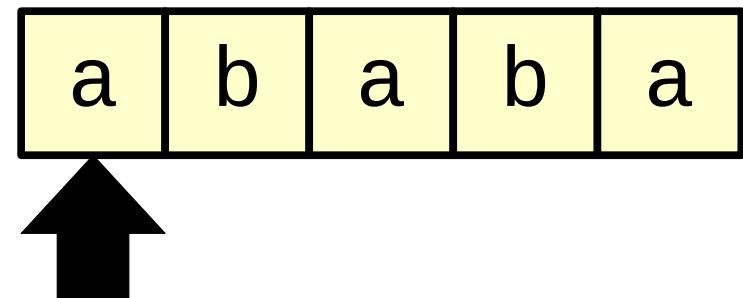
Σ 

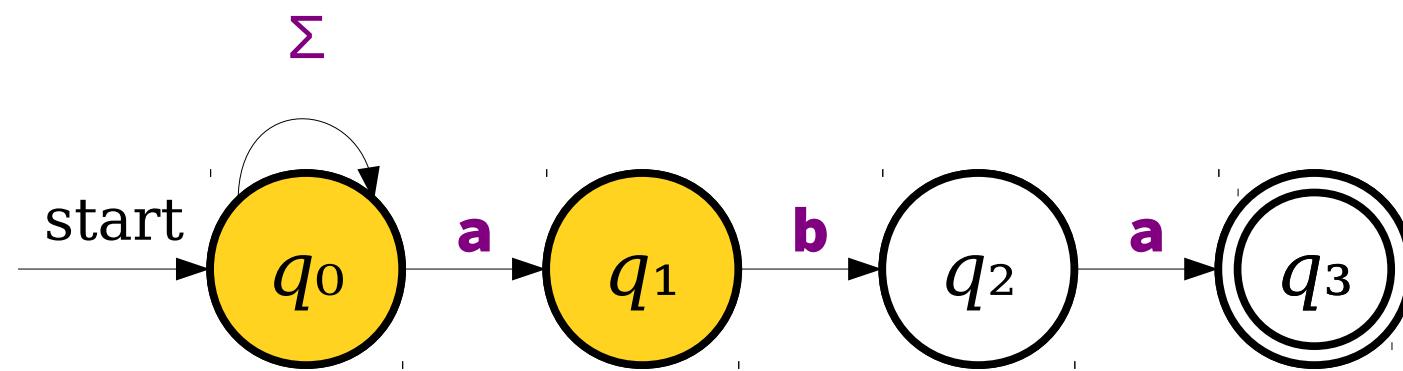
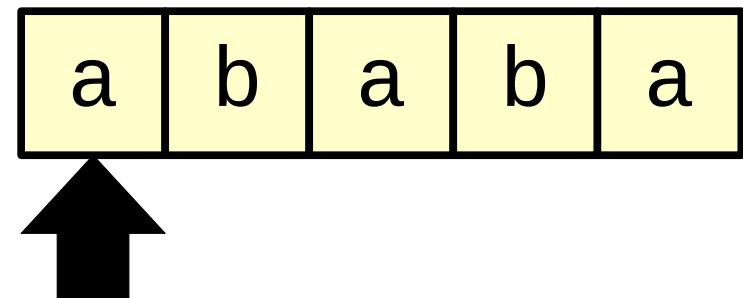


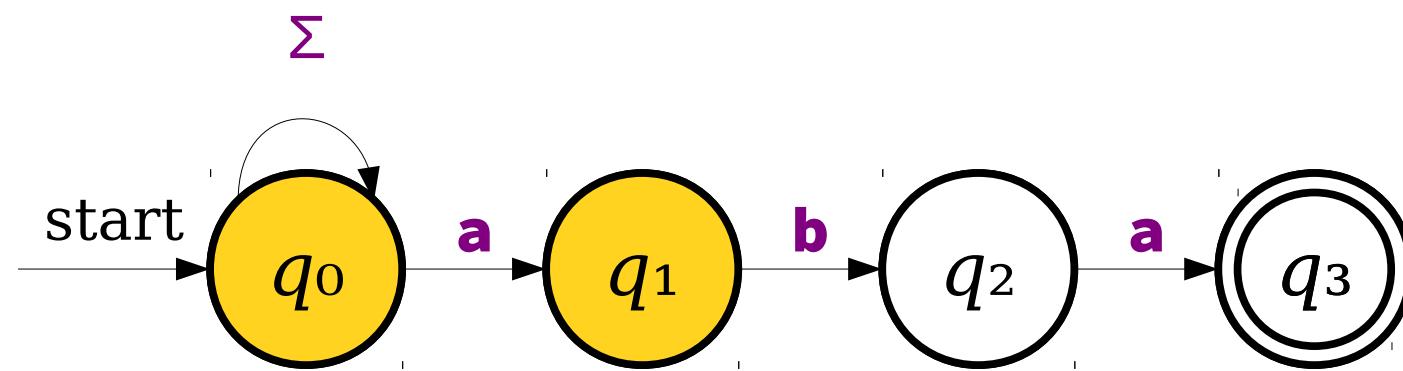
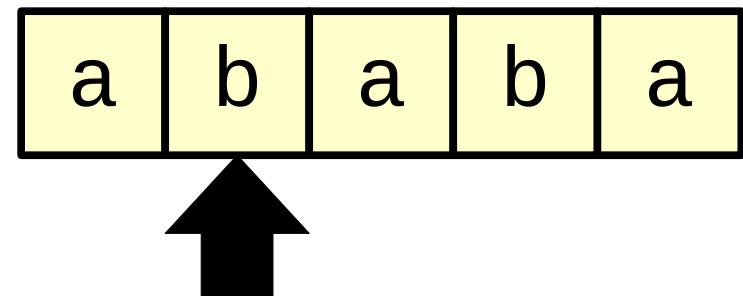


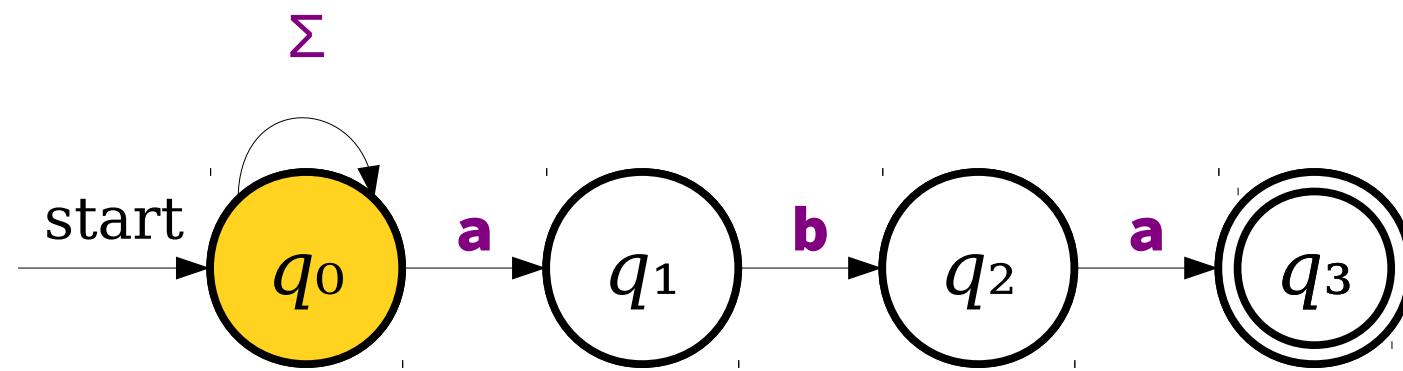
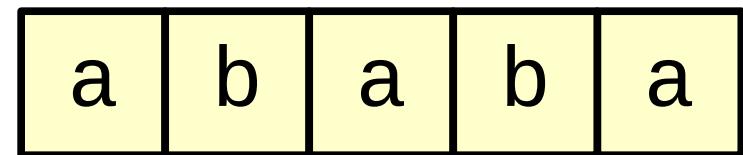


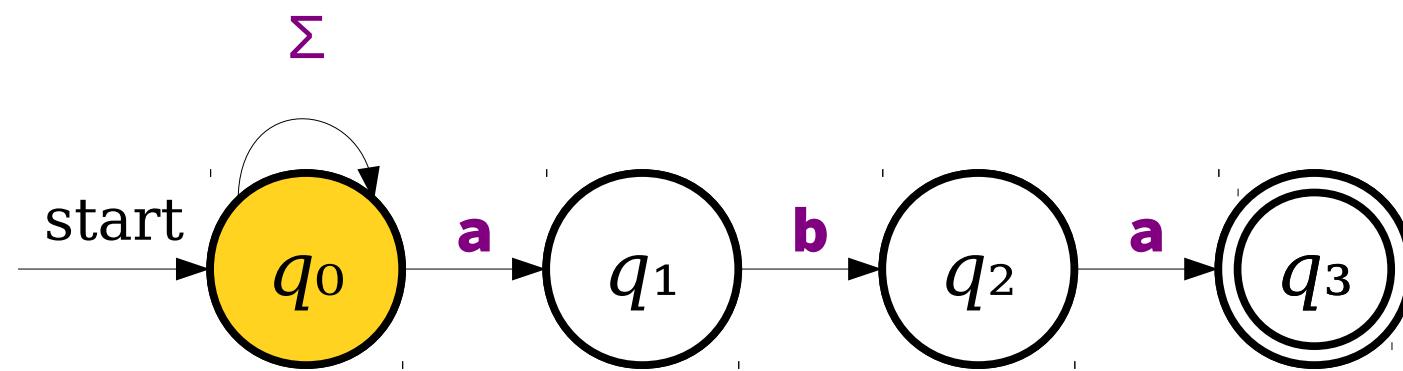
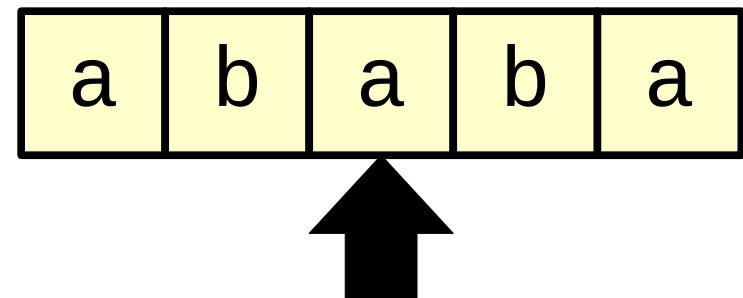


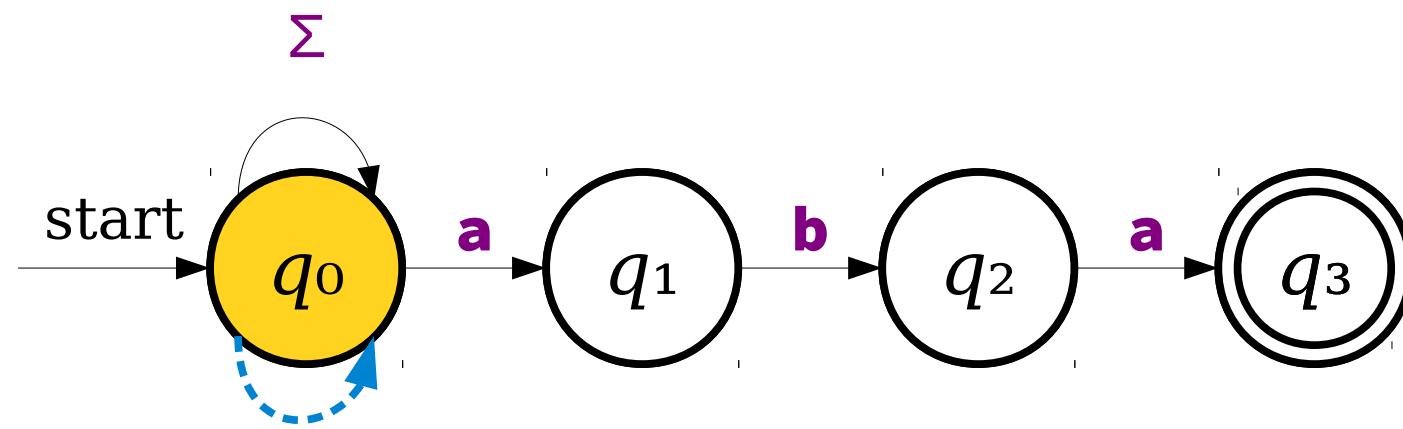
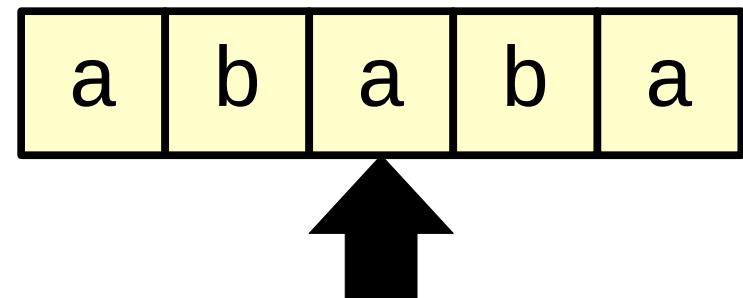


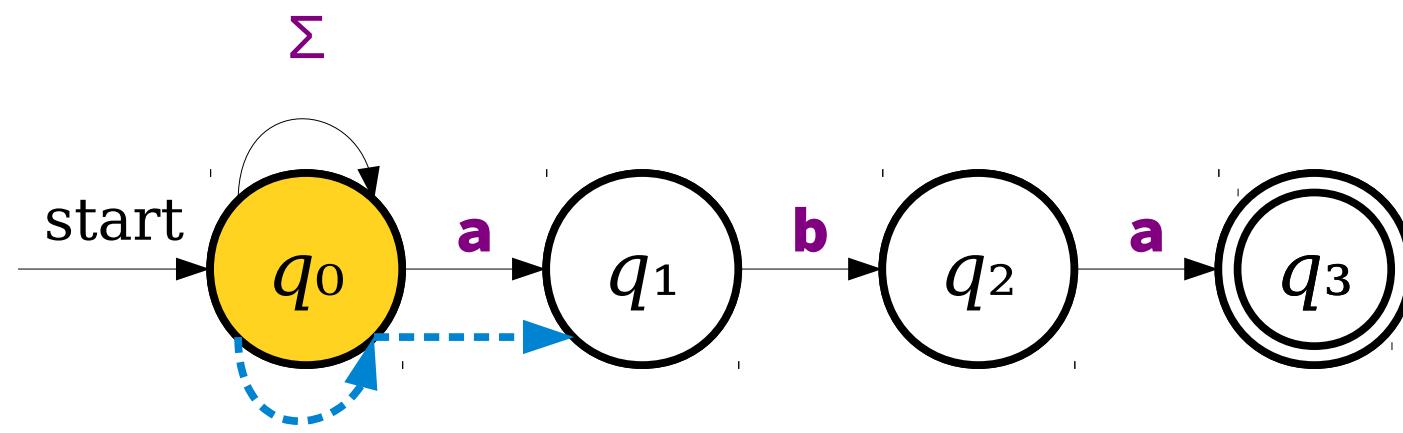
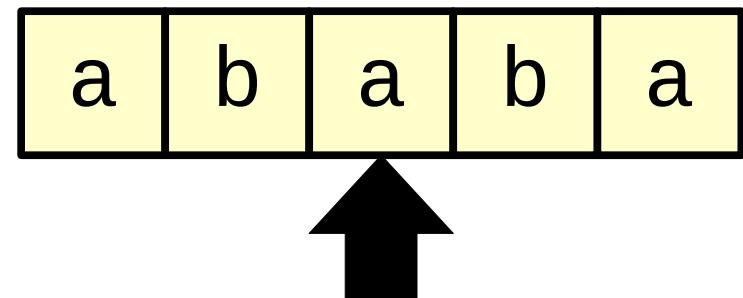


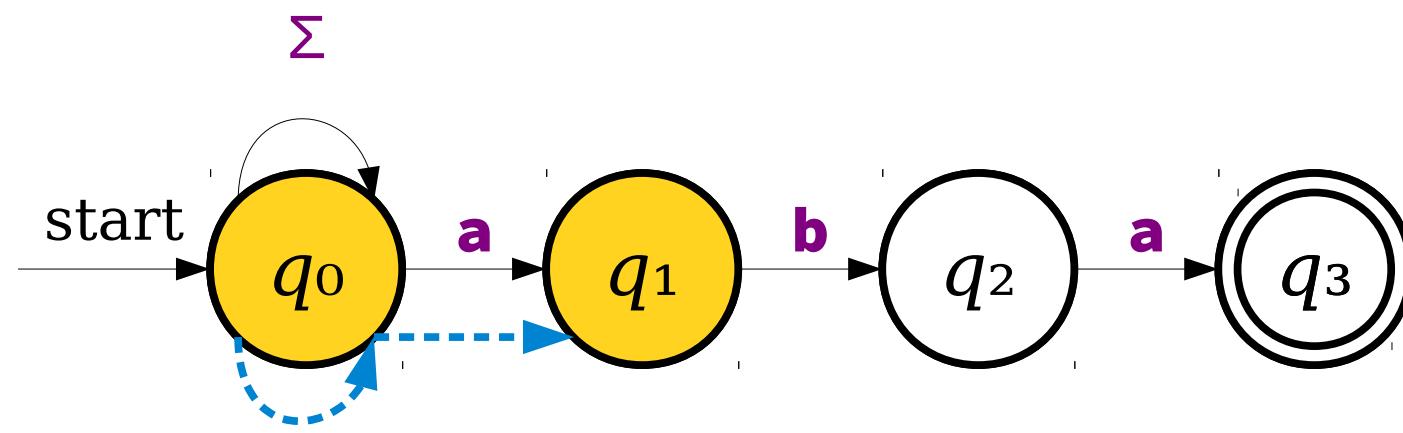
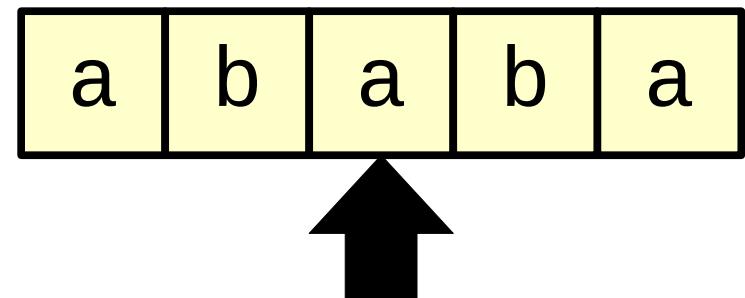


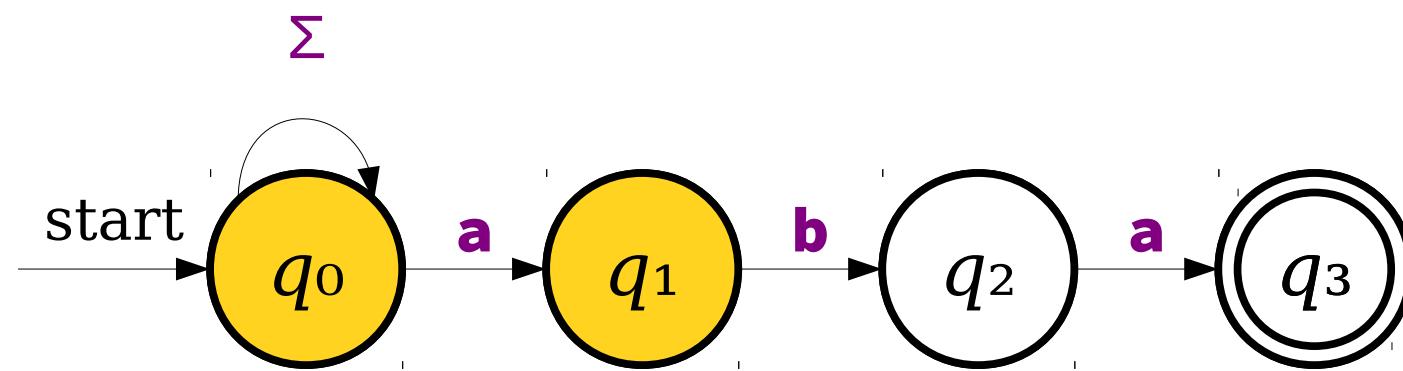
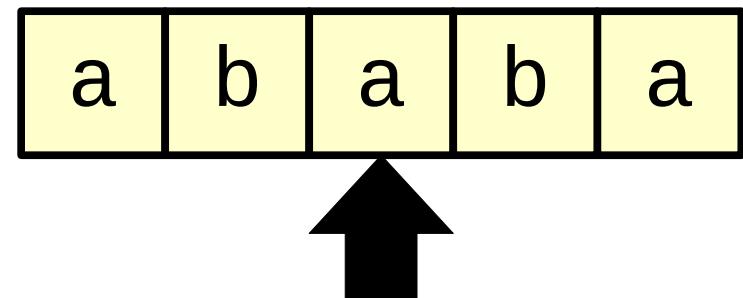


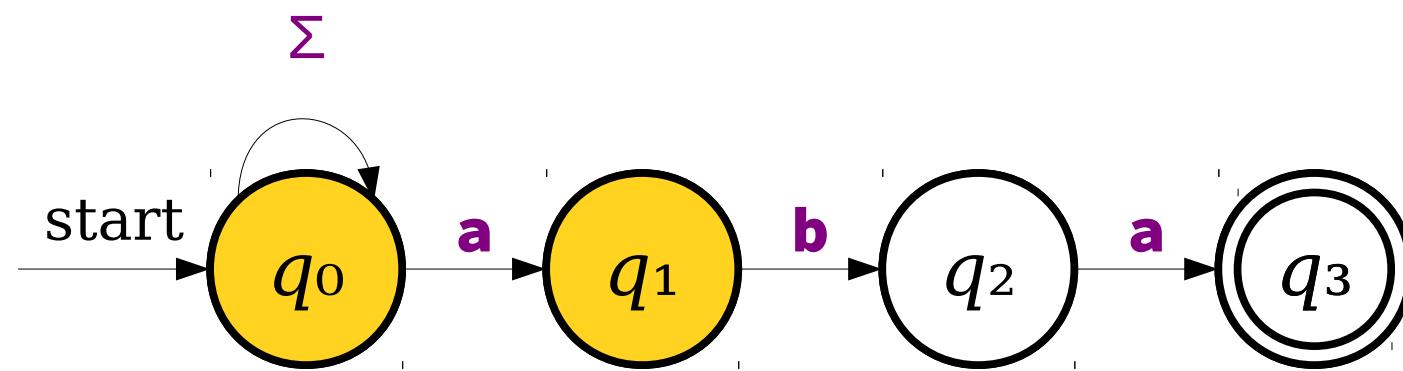
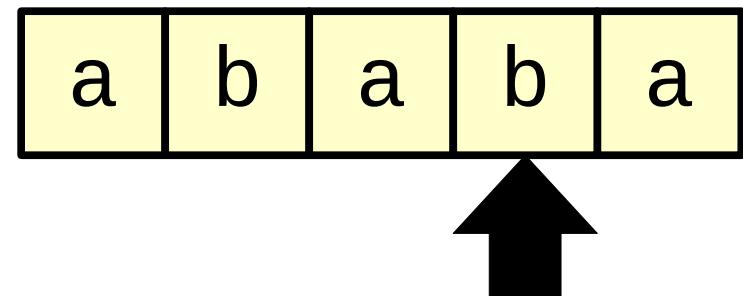


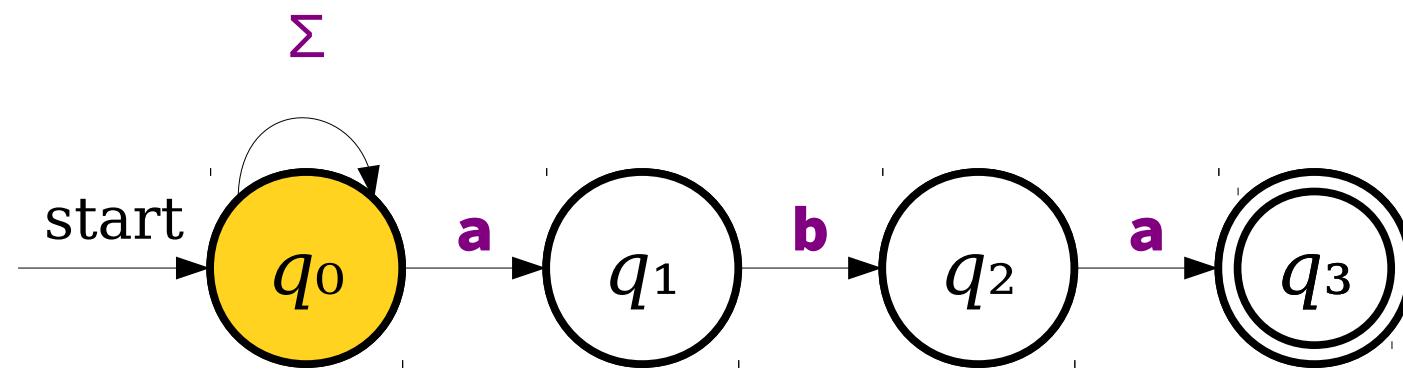
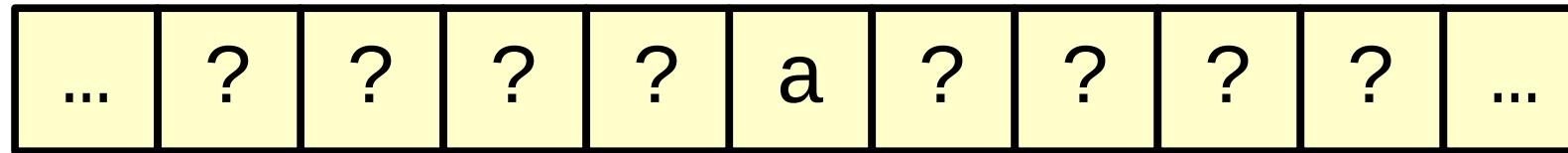


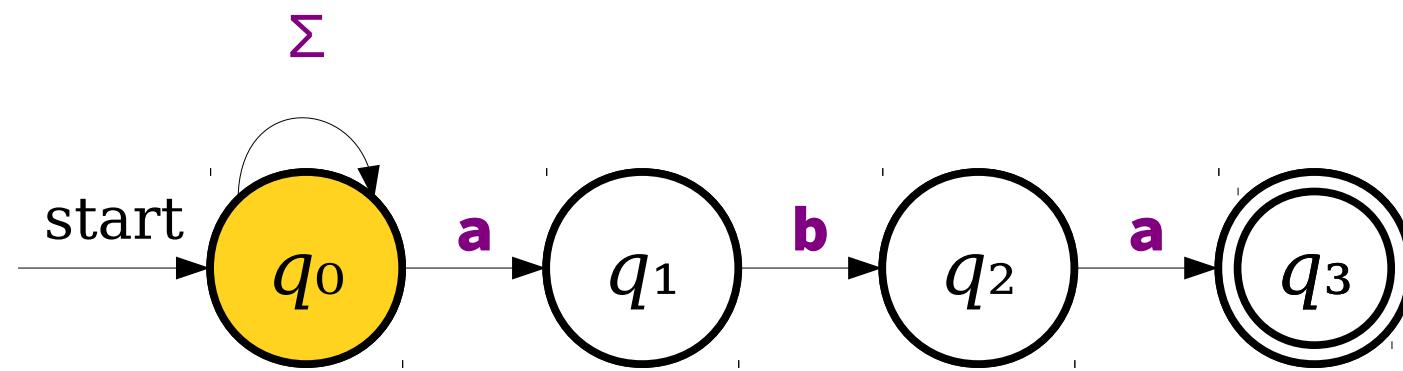
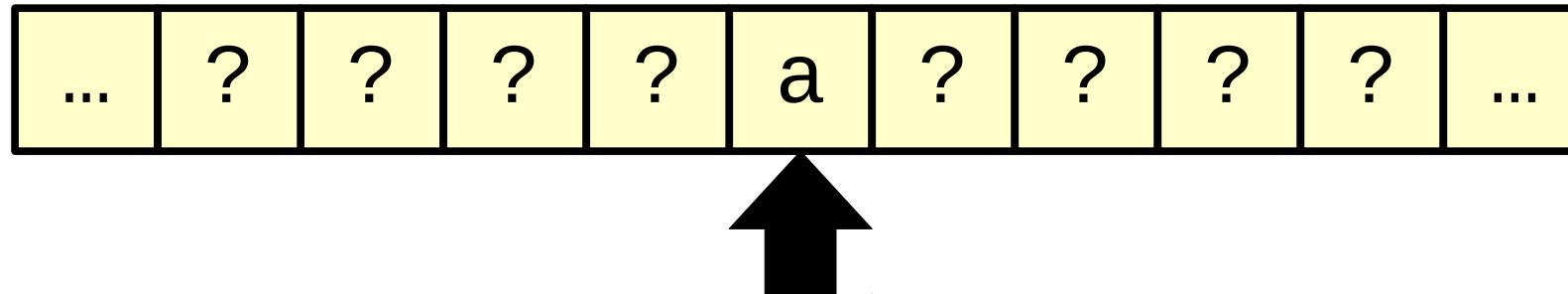


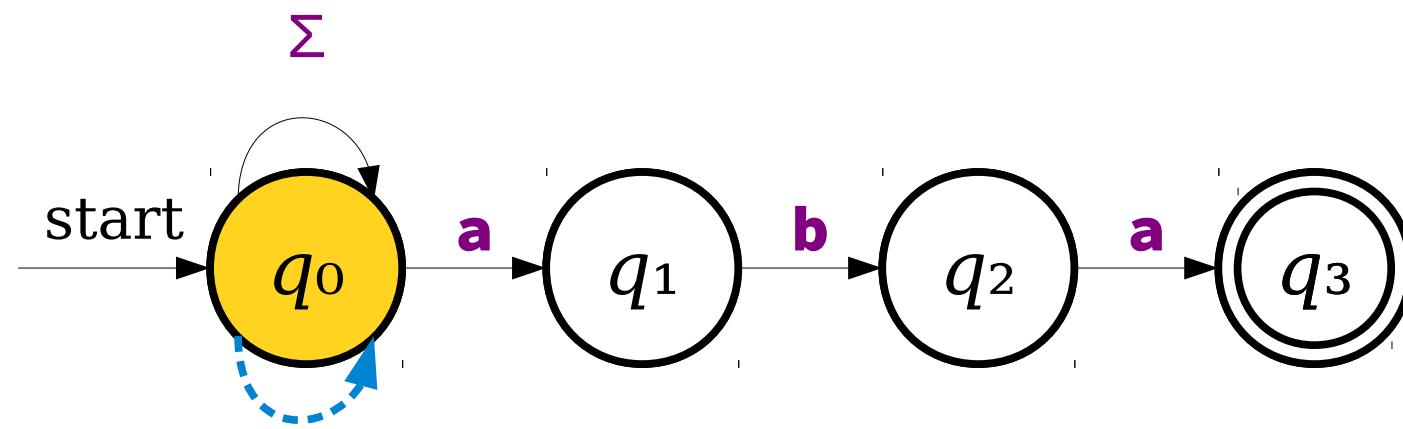
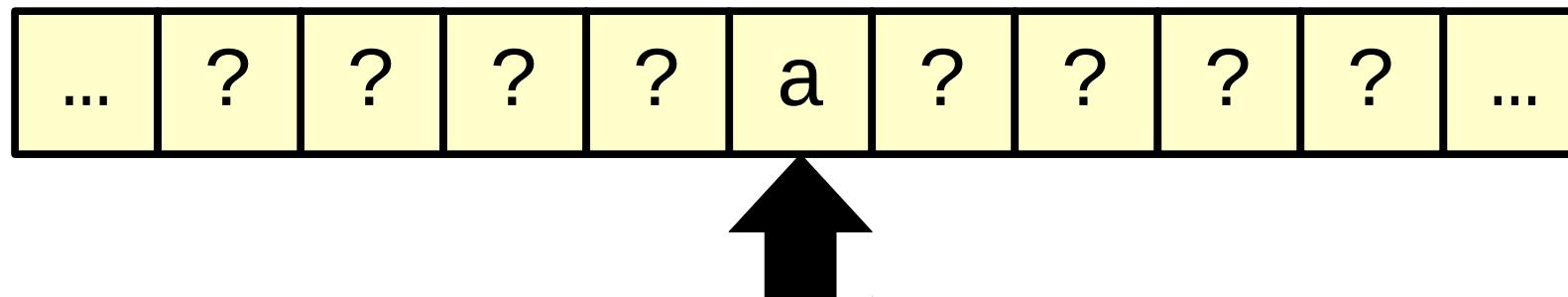


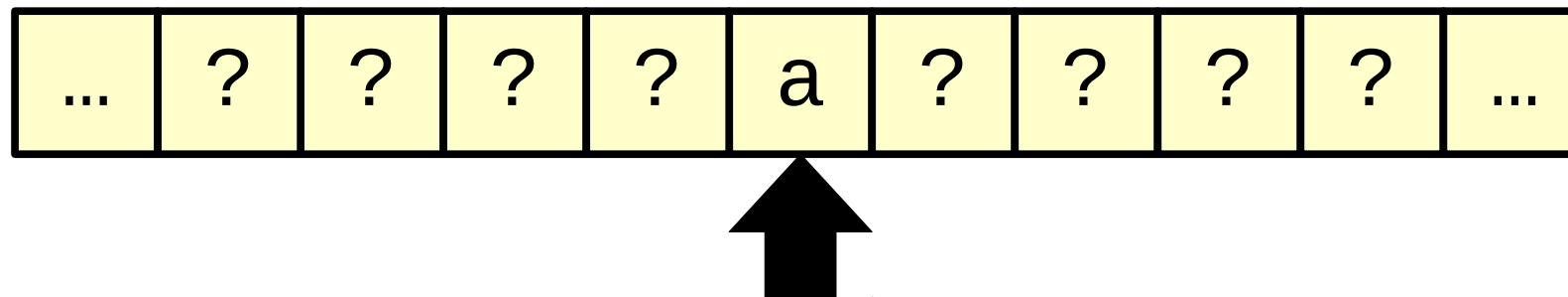


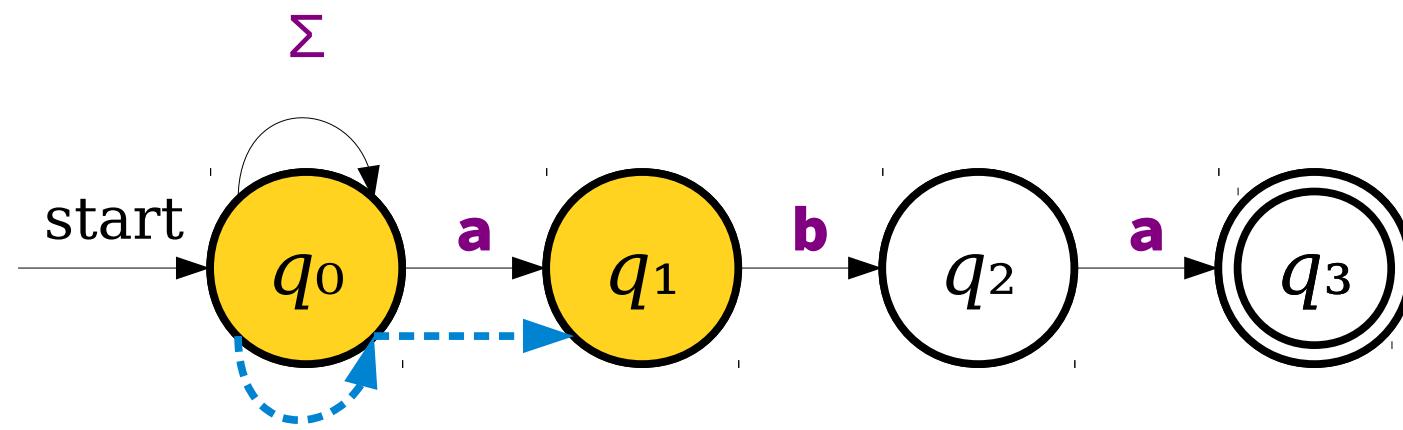
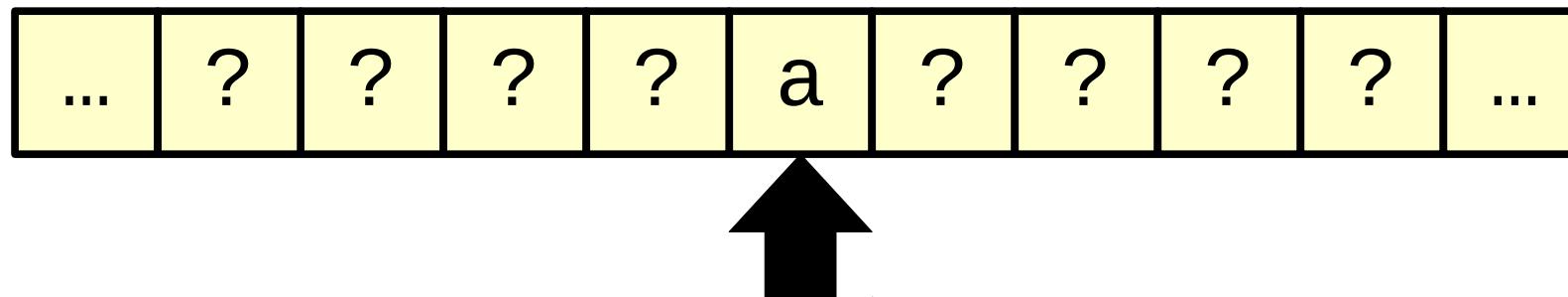


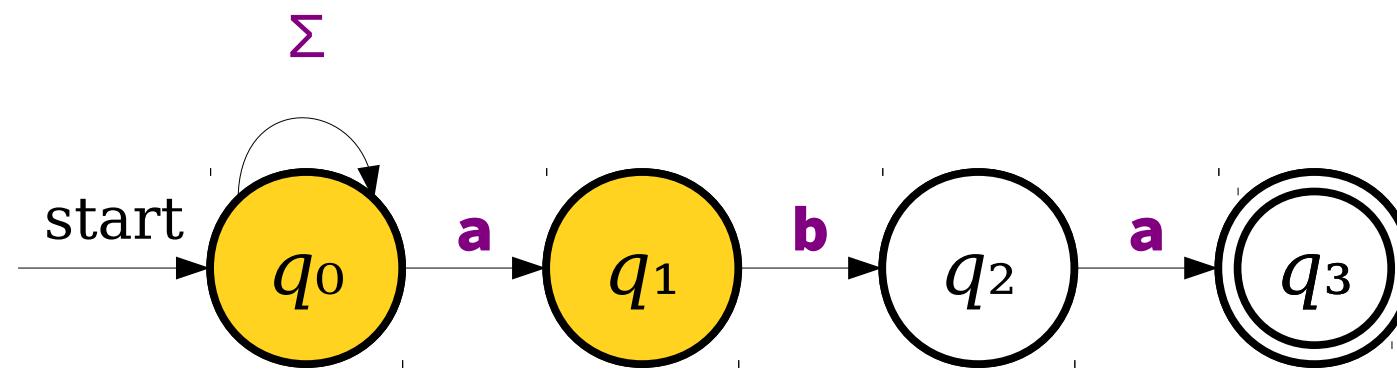
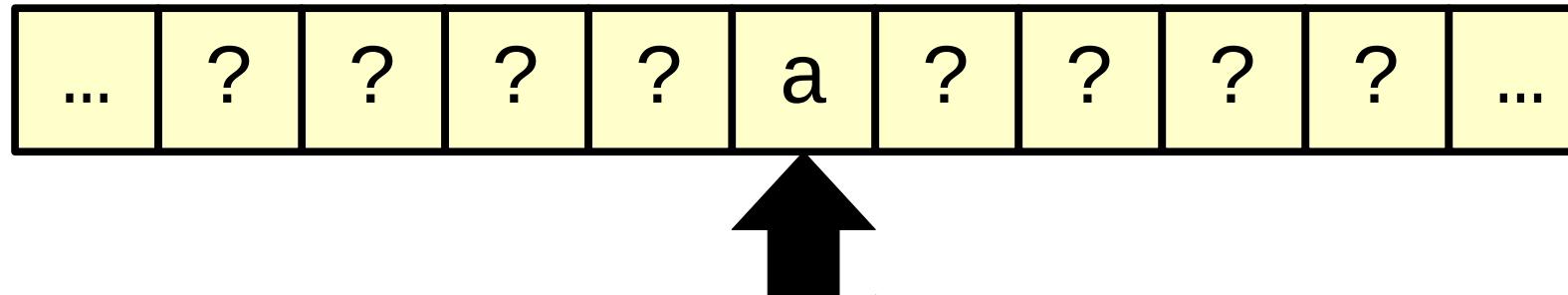


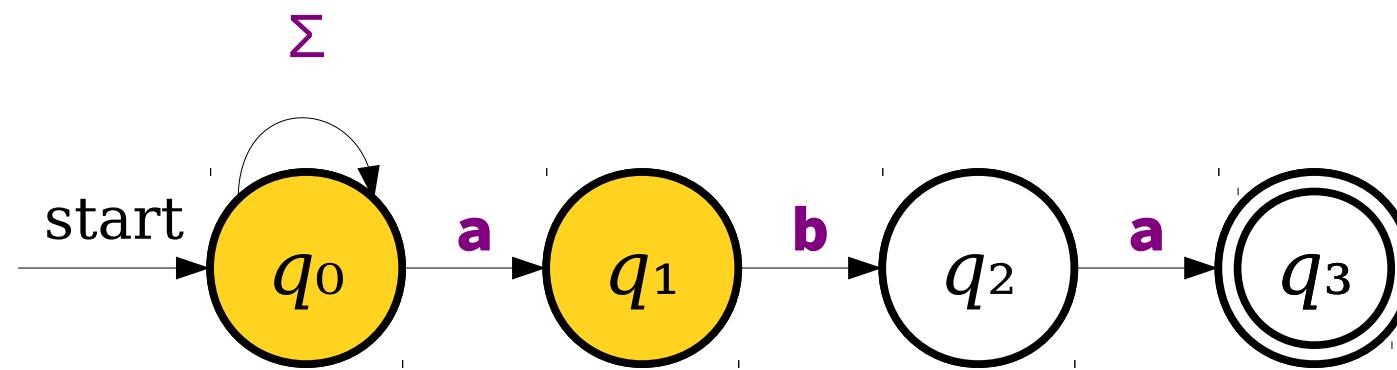
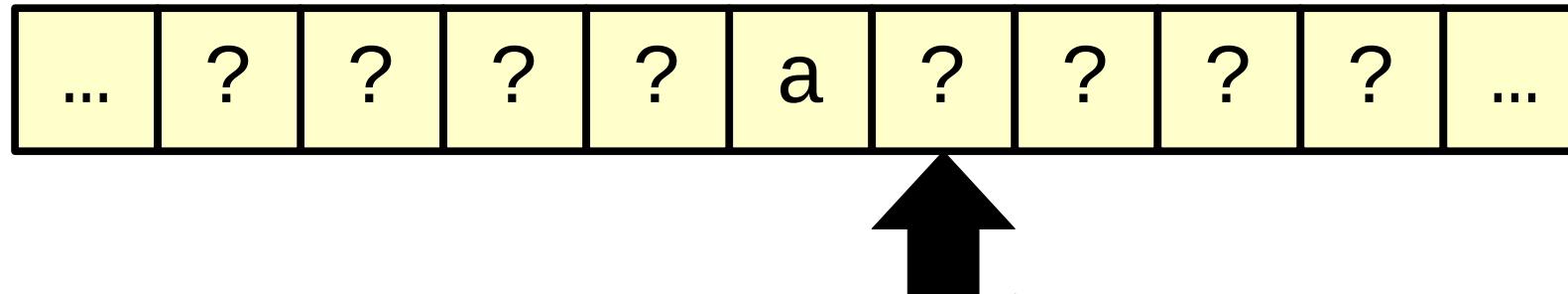


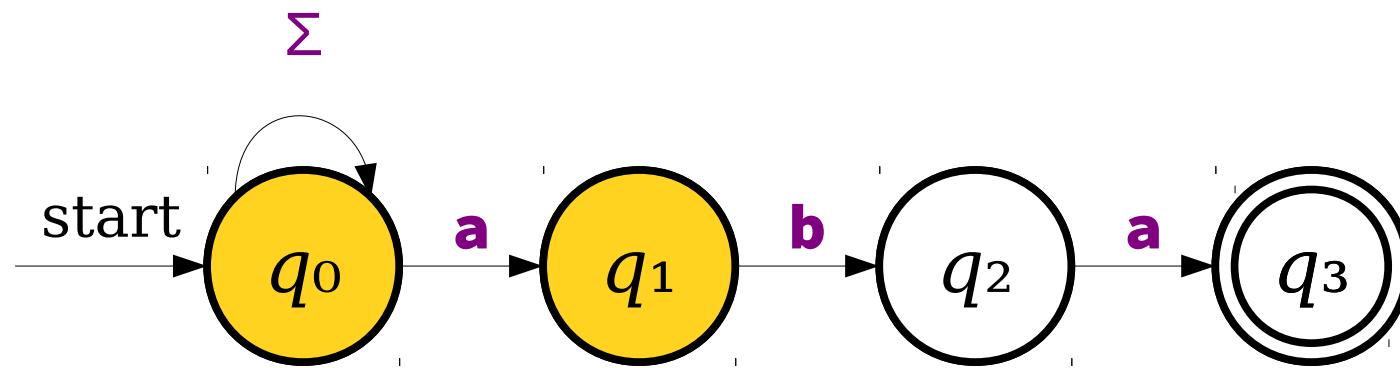






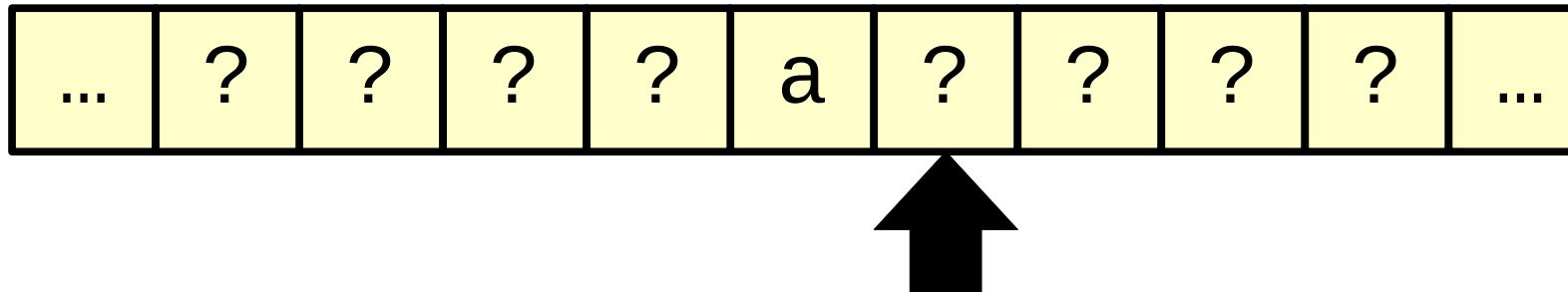






Key insight:

NFA works like a DFA, but “which state am I in right now?” and “which states will I be in next given where I am right now and which character I’m reading?” are questions answered by a set of states, not a single state.



DFAs

- A DFA consists of:
 - A set of states
 - Exactly one element of the set of states designated as start state
 - (as a consequence, the set of states must be nonempty)
 - A subset of the states designated as accepting states
 - An alphabet Σ
 - A transition function that maps (state, character) ordered pairs to states
 - (i.e., for each state in the DFA, there must be ***exactly one*** transition defined for each symbol in Σ)

Remember: For DFAs, we said we could formally define the transitions (arrows) as a function $f: S \times \Sigma \rightarrow S$. (in other words, an order pair of current state and input character (q, c) maps to a destination state q' .)

Math notation note:

In $f: S \times \Sigma \rightarrow S$, the \times (cross product) means “make ordered pairs out of these two sets.” So if $S = \{a, b\}$ and $T = \{1, 2\}$, $S \times T = \dots??$

Go to

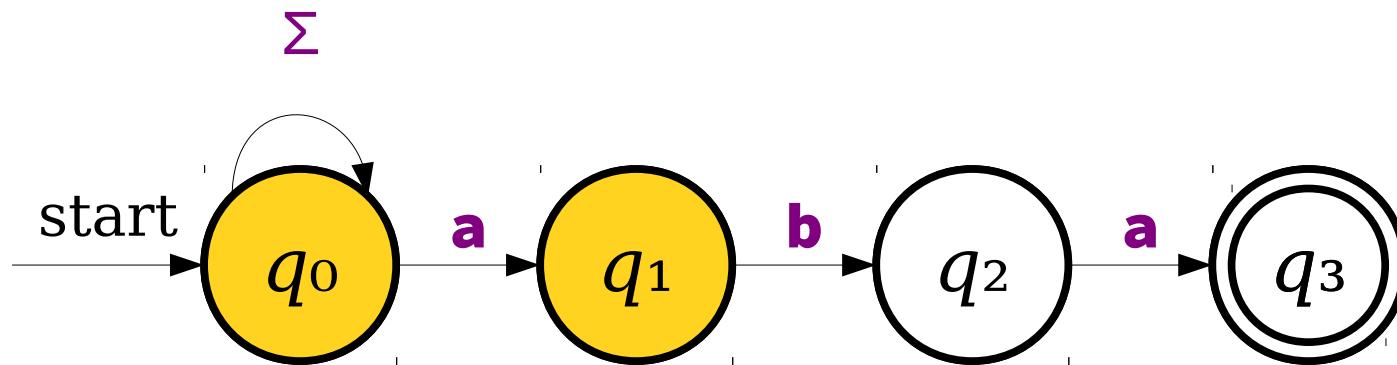
Pollev.com/cs103spr25

DFAs

- A DFA consists of:
 - A set of states
 - Exactly one element of the set of states designated as start state
 - (as a consequence, the set of states must be nonempty)
 - A subset of the states designated as accepting states
 - An alphabet Σ
 - A transition function that maps (state, character) ordered pairs to states
 - (i.e., for each state in the DFA, there must be ***exactly one*** transition defined for each symbol in Σ)

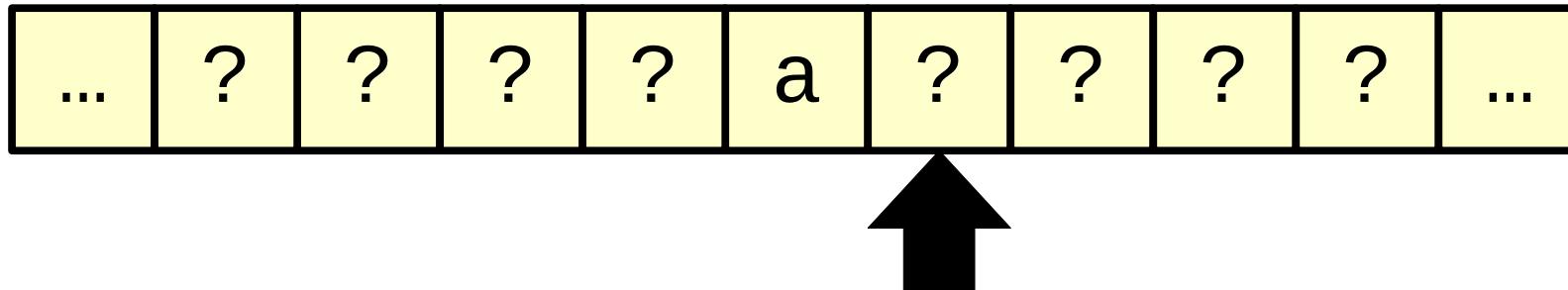
Remember: For DFAs, we said we could formally define the transitions (arrows) as a function $f: S \times \Sigma \rightarrow S$. (in other words, an order pair of current state and input character (q, c) maps to a destination state q' .)

Math notation note: In $f: S \times \Sigma \rightarrow S$, the \times (cross product) means “make ordered pairs out of these two sets.” So if $S = \{a, b\}$ and $T = \{1, 2\}$, $S \times T = \{(a,1), (a,2), (b,1), (b,2)\}$



Key insight:

NFA works like a DFA, but “which state am I in right now?” and “which states will I be in next given where I am right now and which character I’m reading?” are questions answered by a set of states, not a single state.

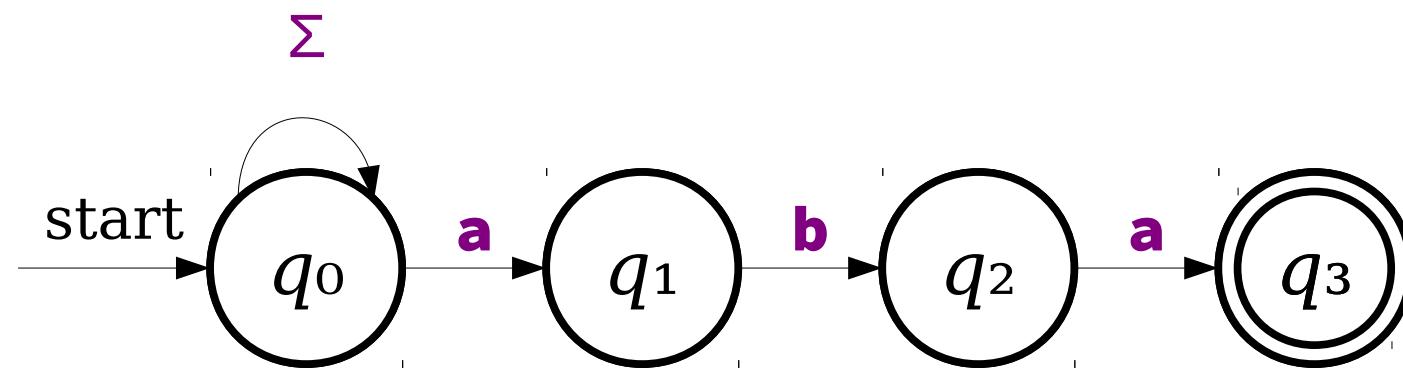
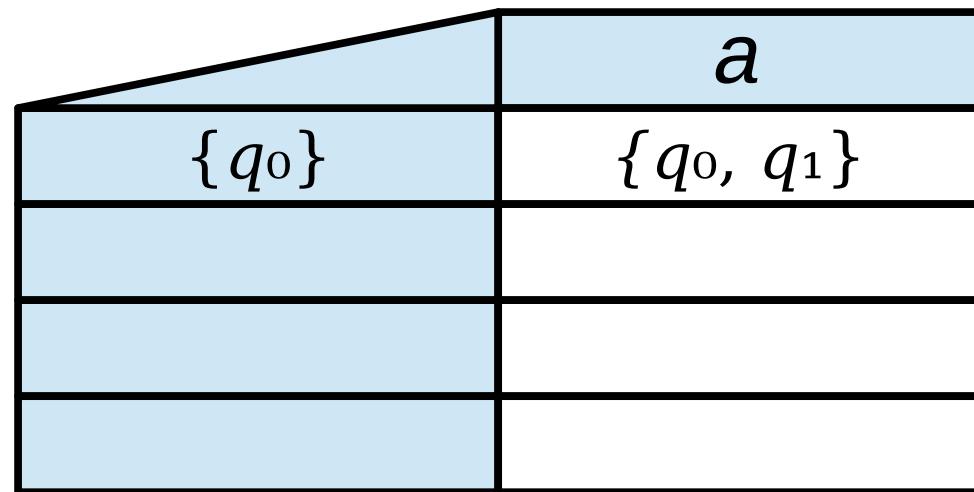


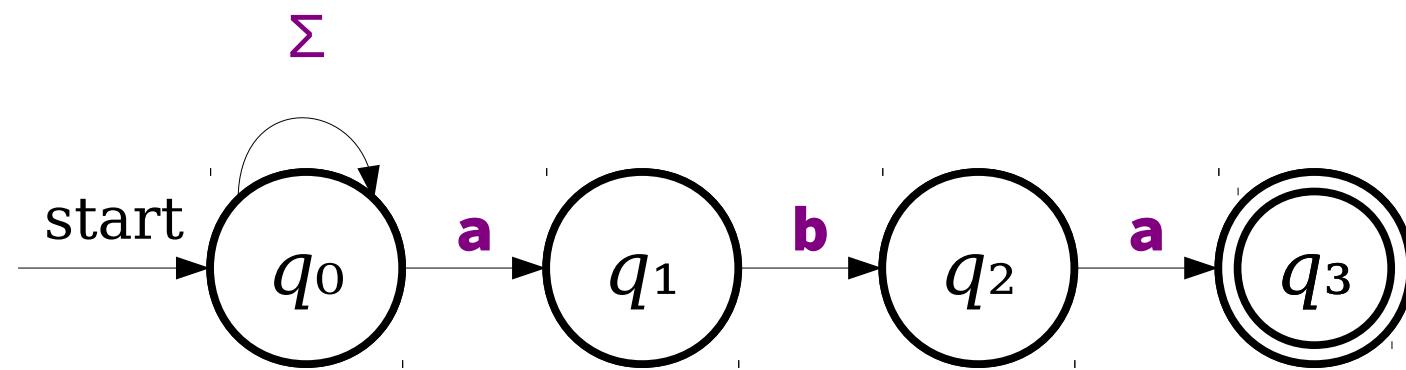
Remember: For DFAs, we said we could formally define the transitions (arrows) as a function $f : S \times \Sigma \rightarrow S$. (in other words, an order pair of current state and input character (q, c) maps to a destination state q' .

Question:

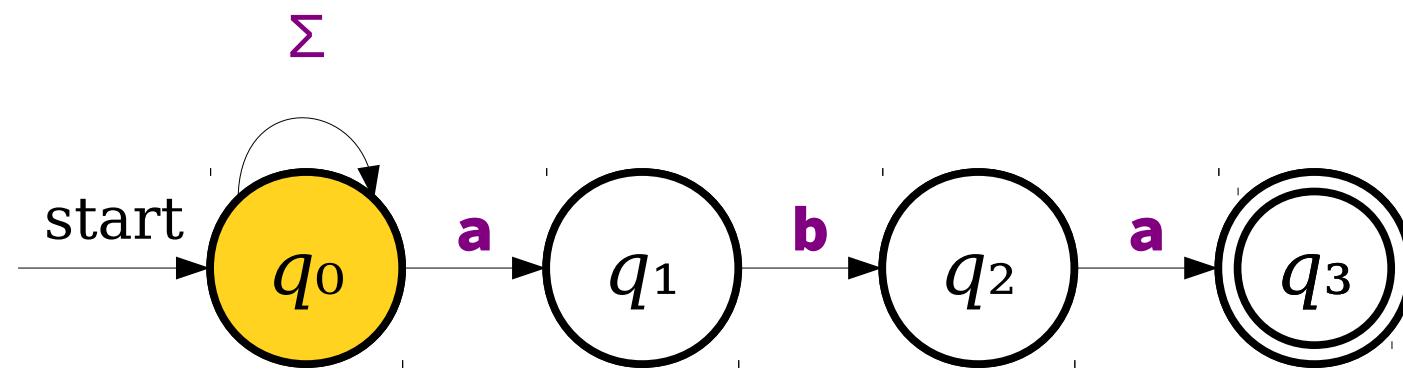
How would we formally define the transitions for an NFA as a function, given this insight?

Go to
pollev.com/cs103spr25

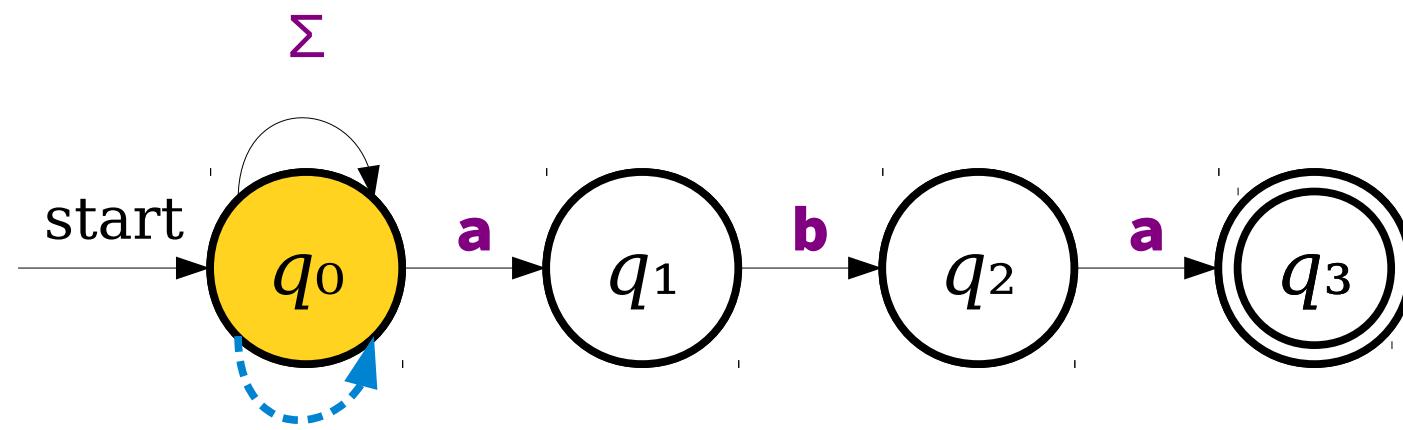




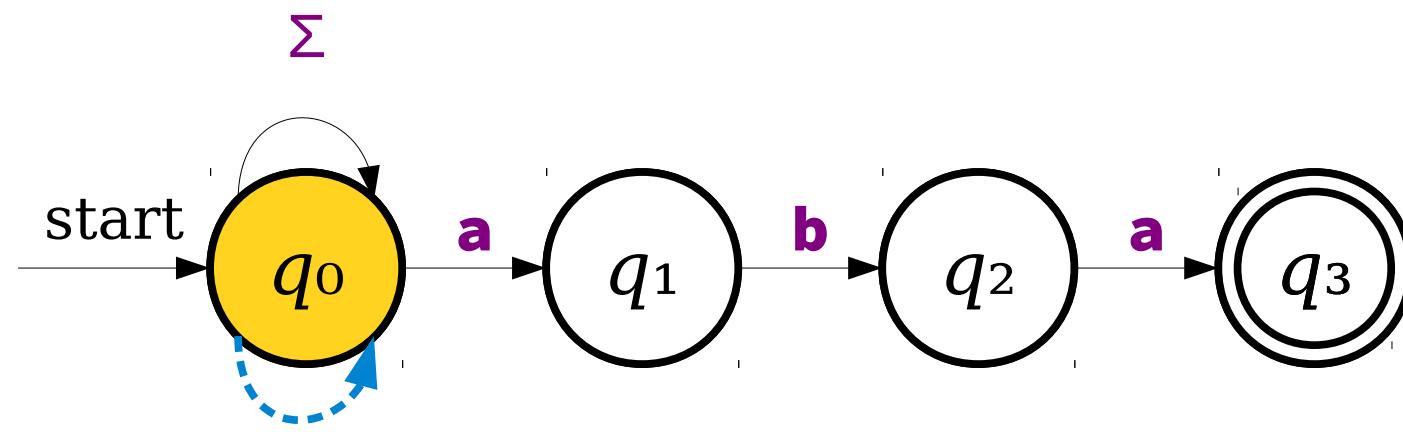
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	



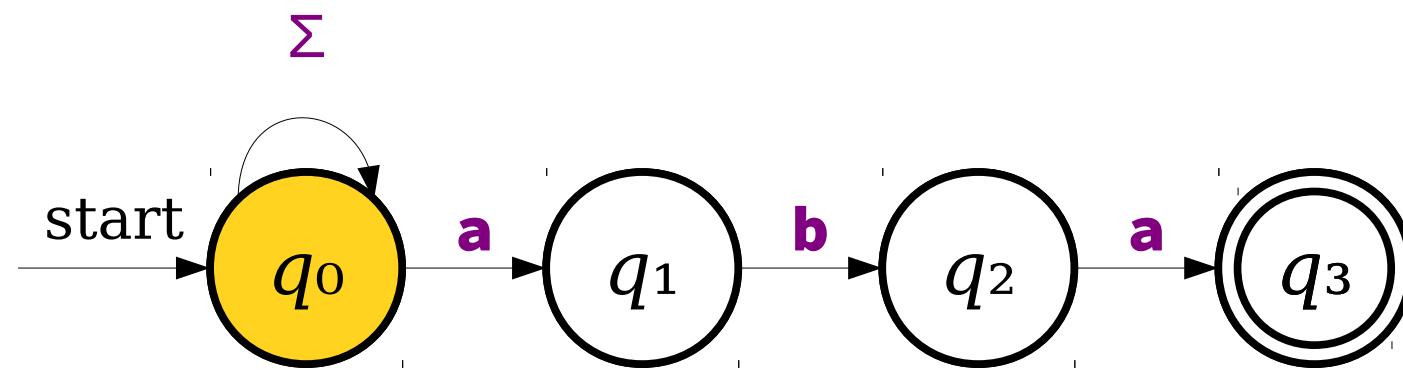
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	



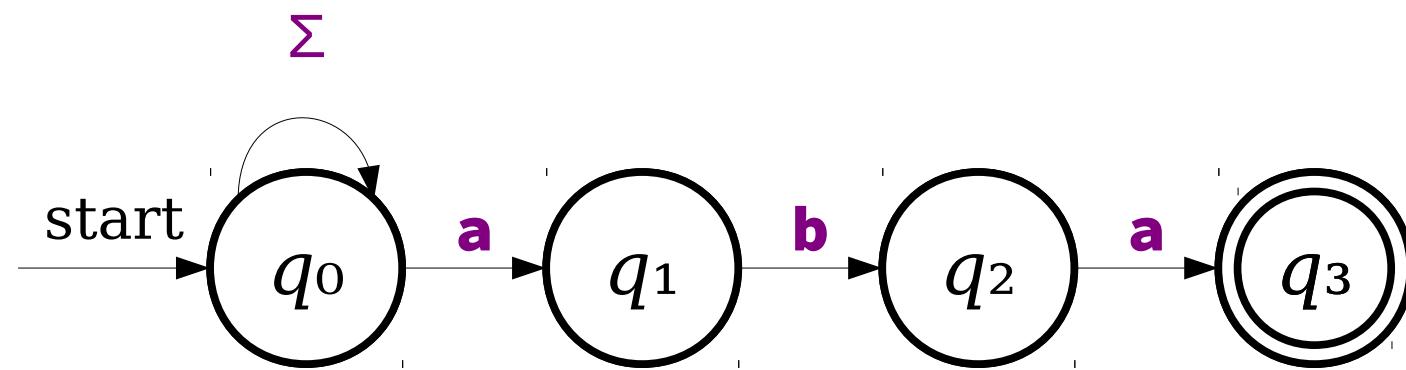
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	



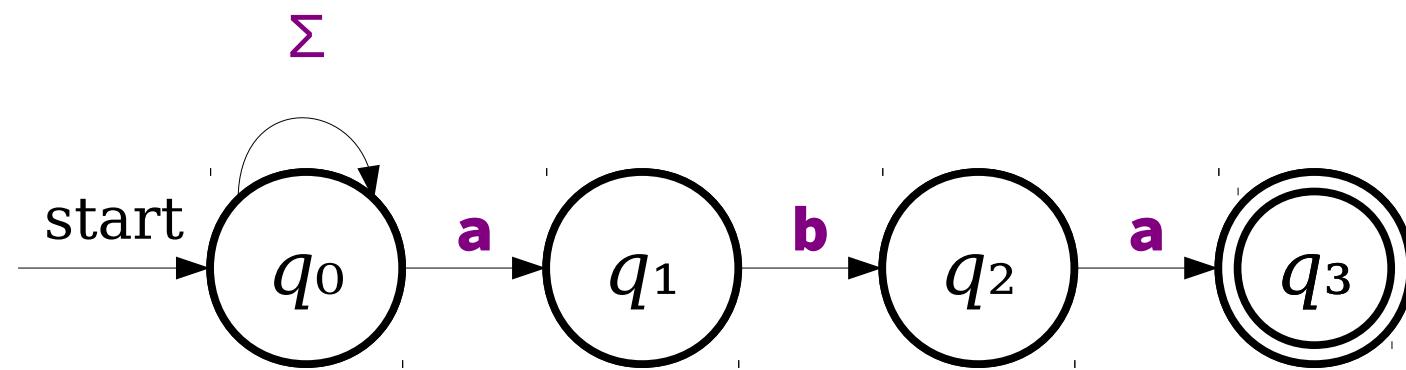
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$



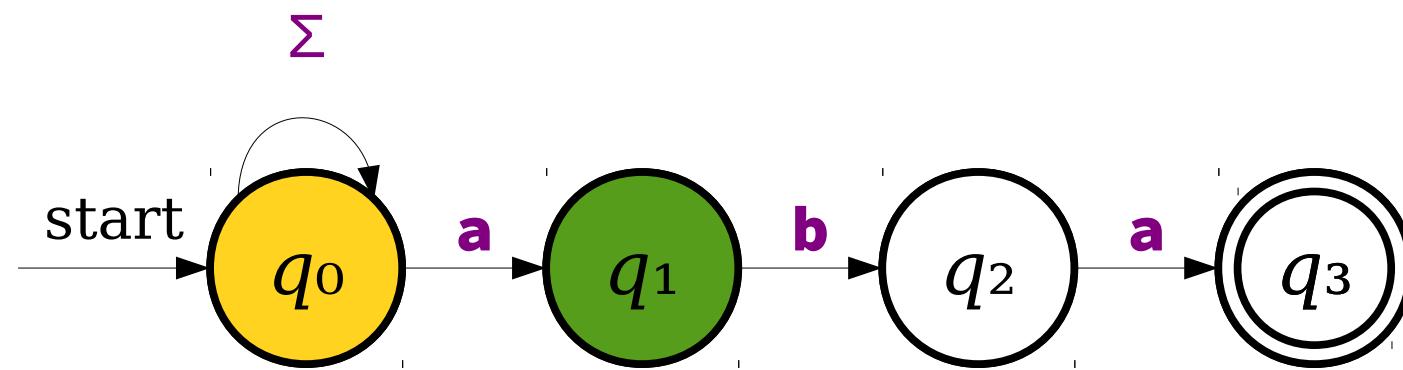
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$



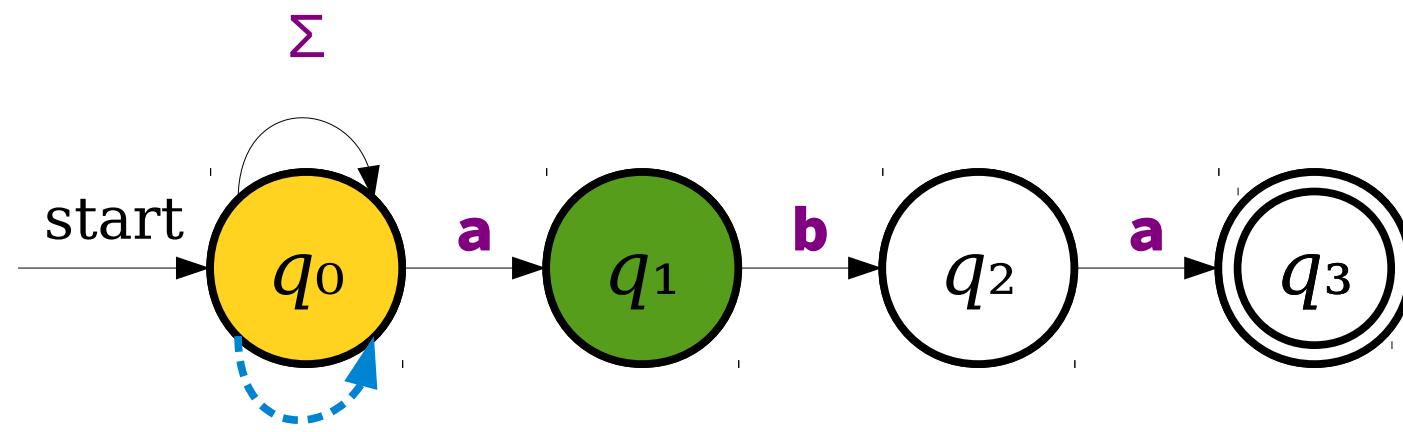
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$



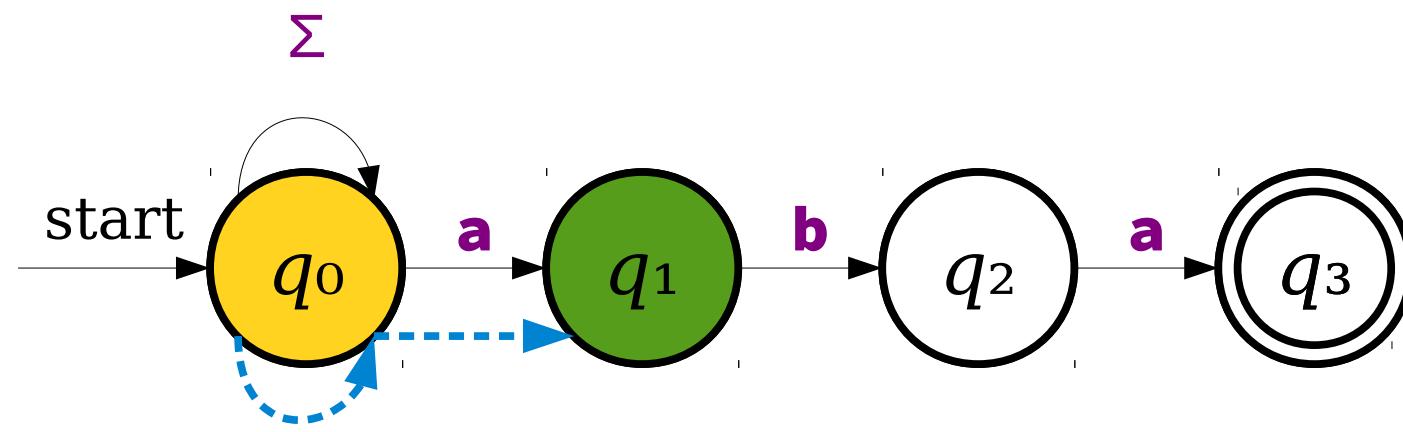
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		



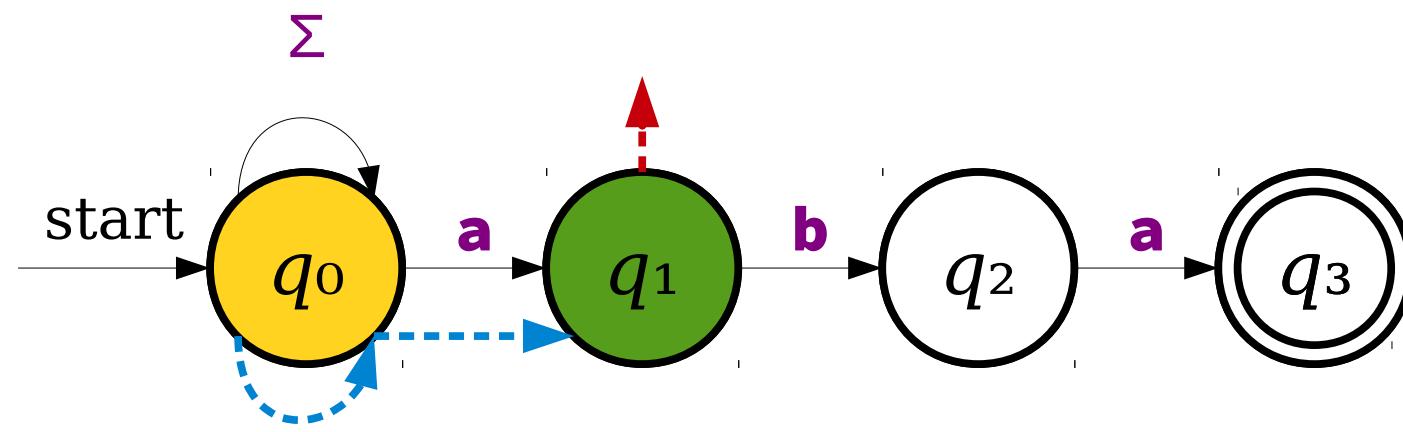
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		



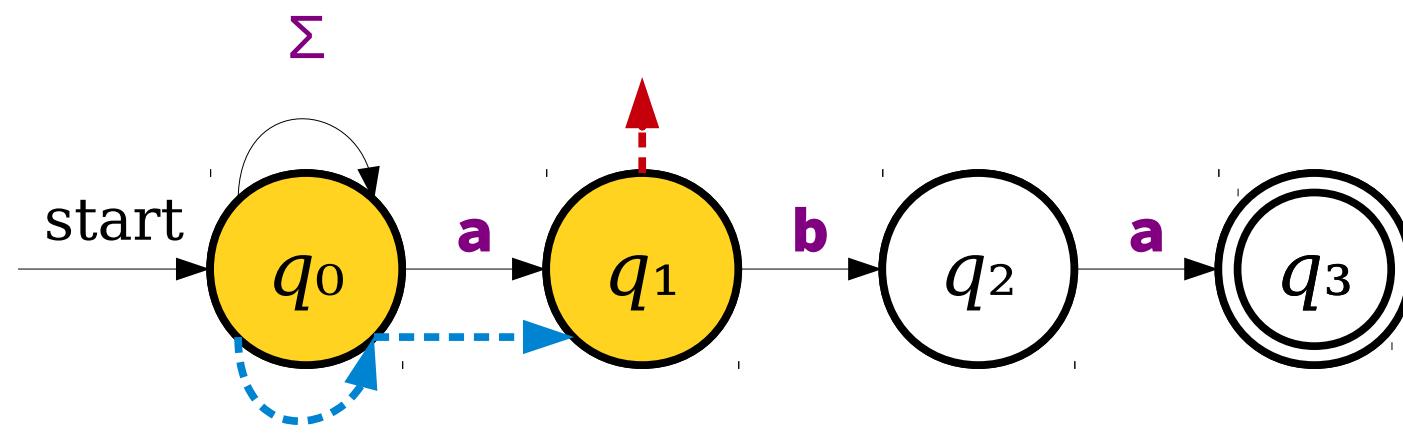
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		



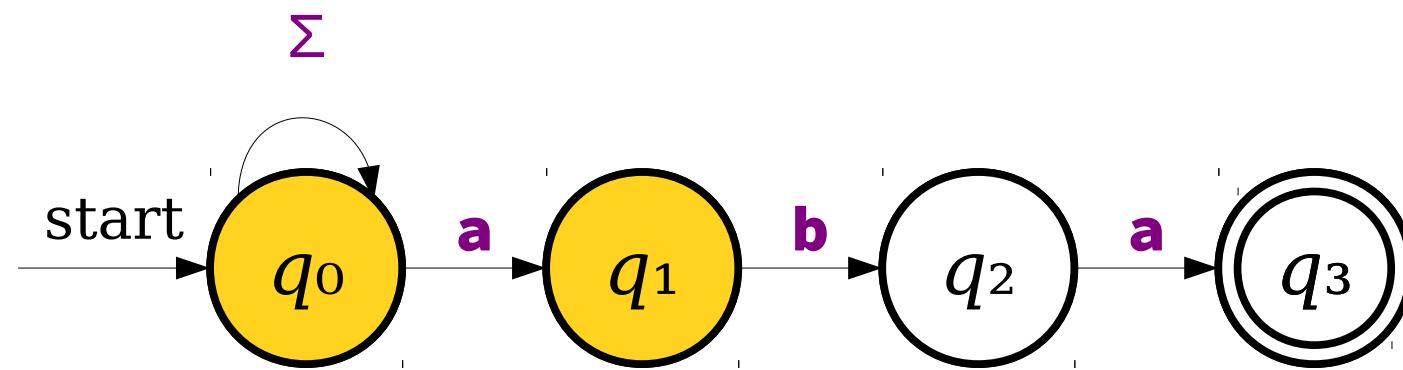
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		



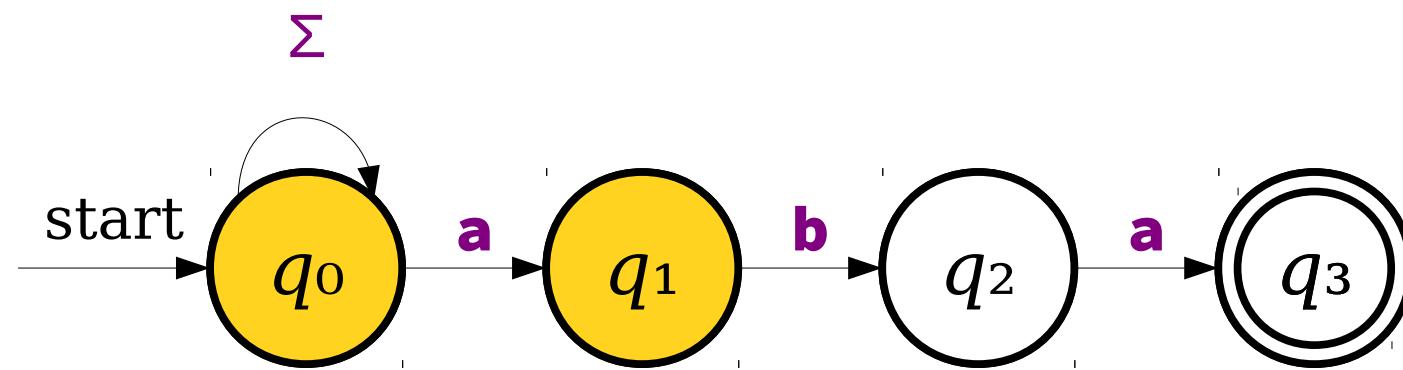
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		



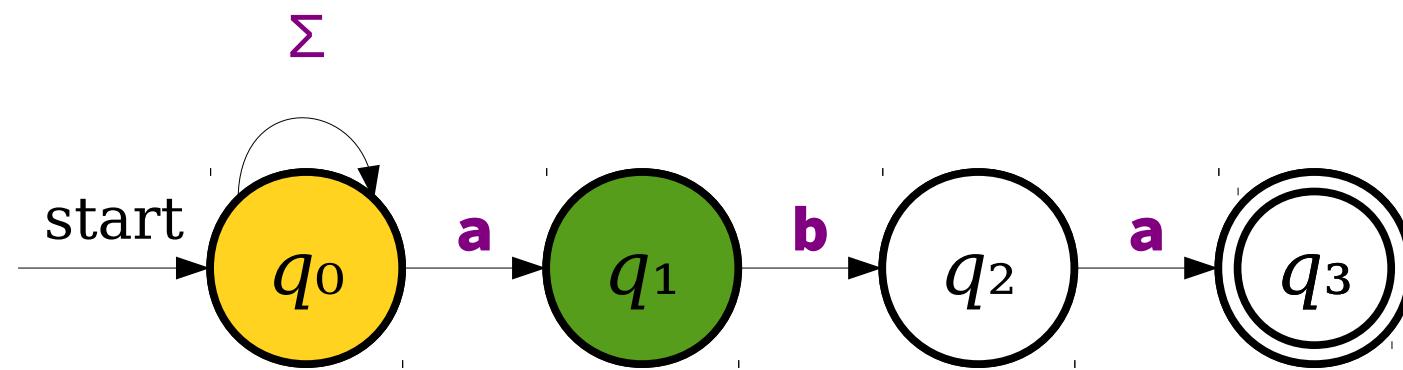
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		



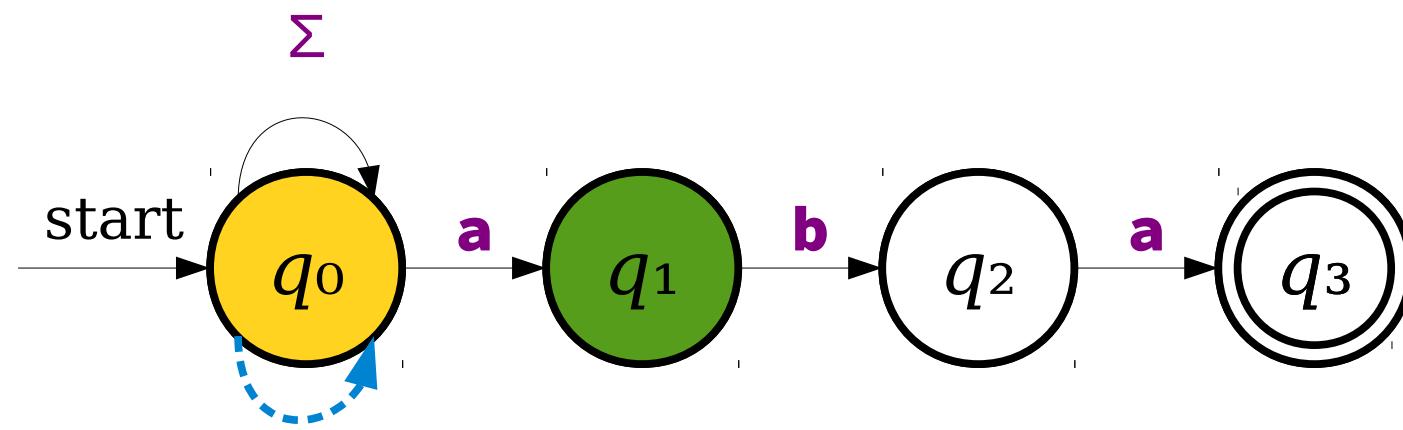
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		



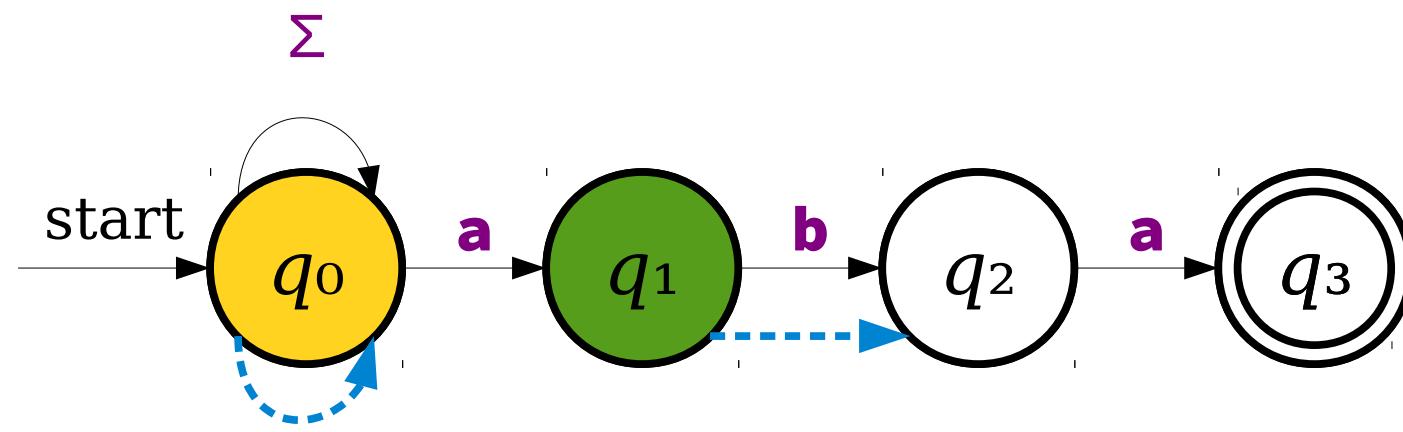
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	



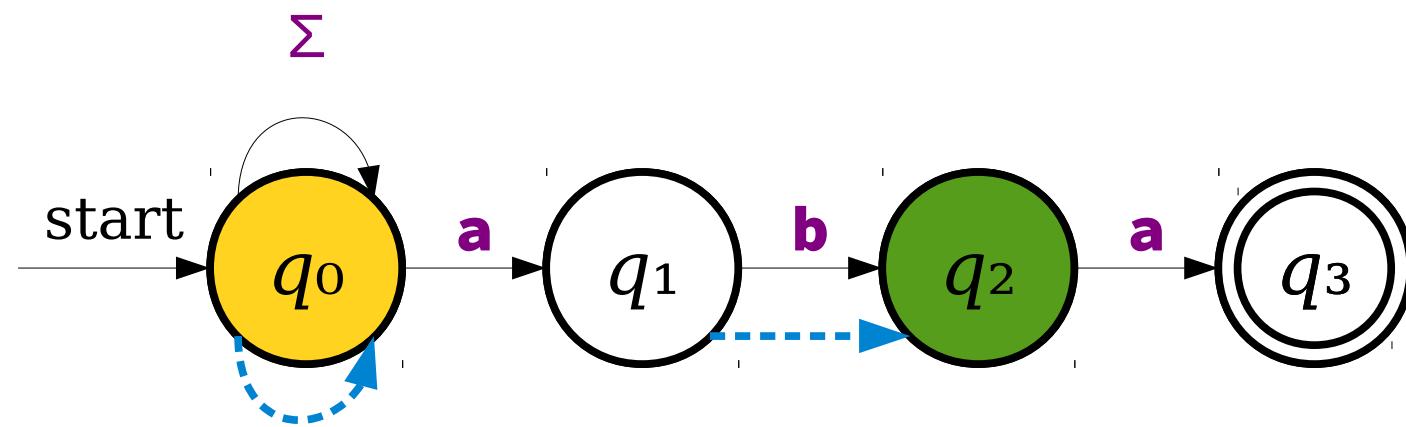
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	



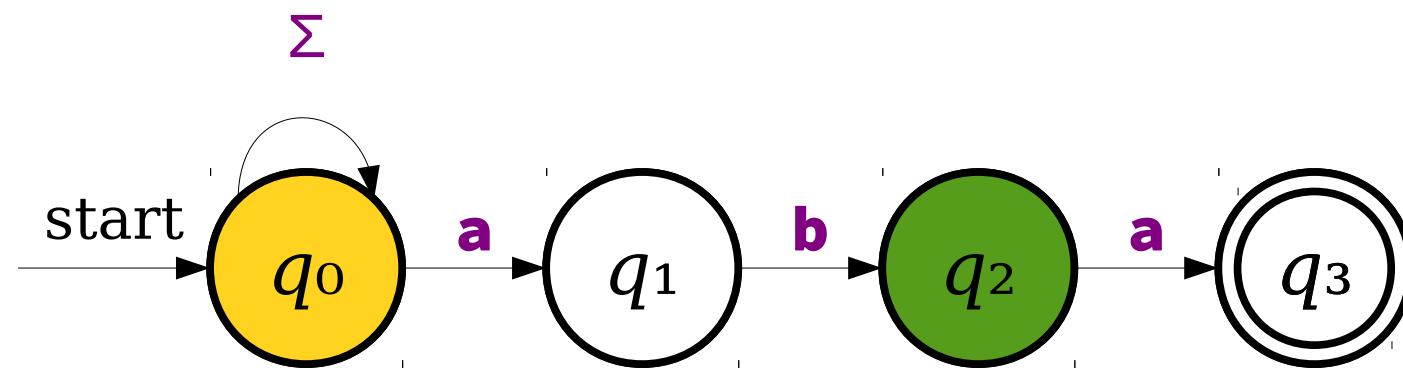
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	



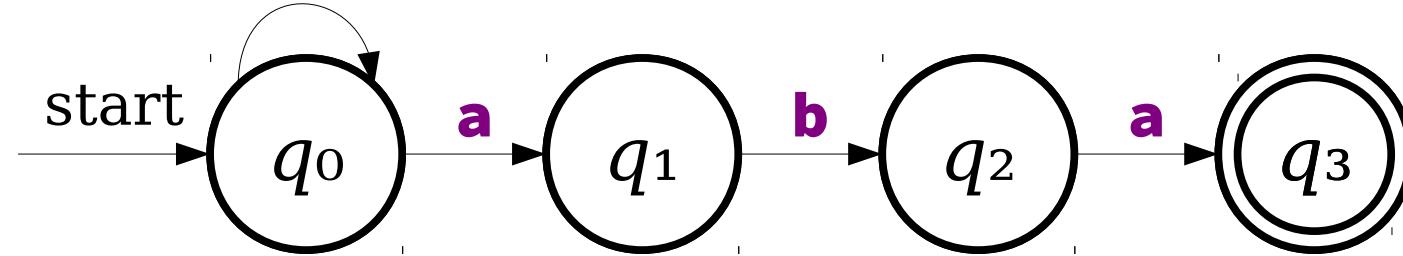
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	



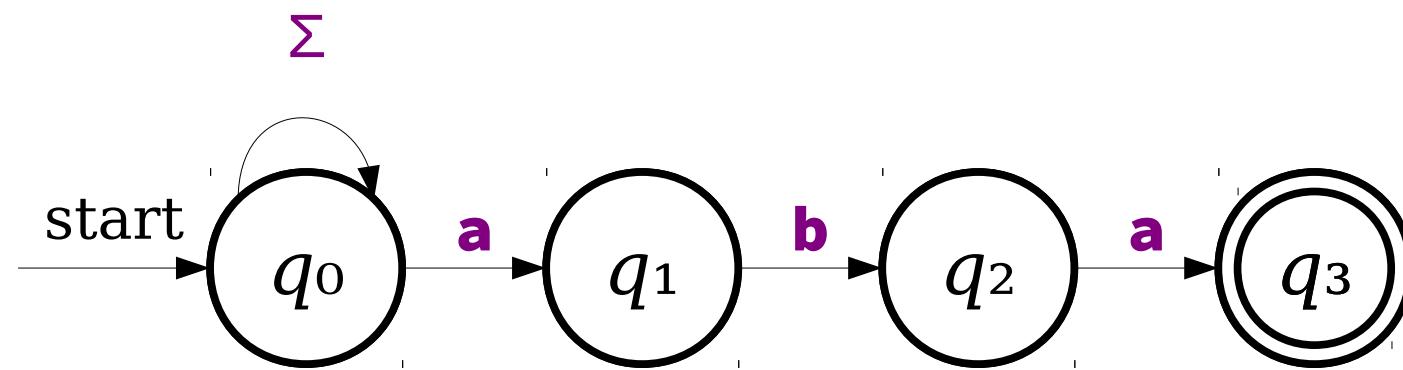
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	



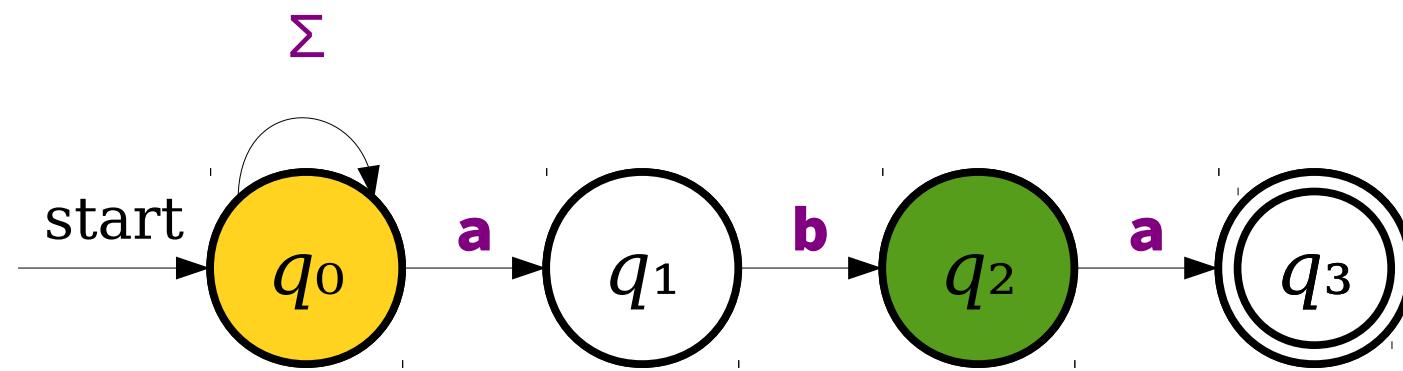
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

Σ 

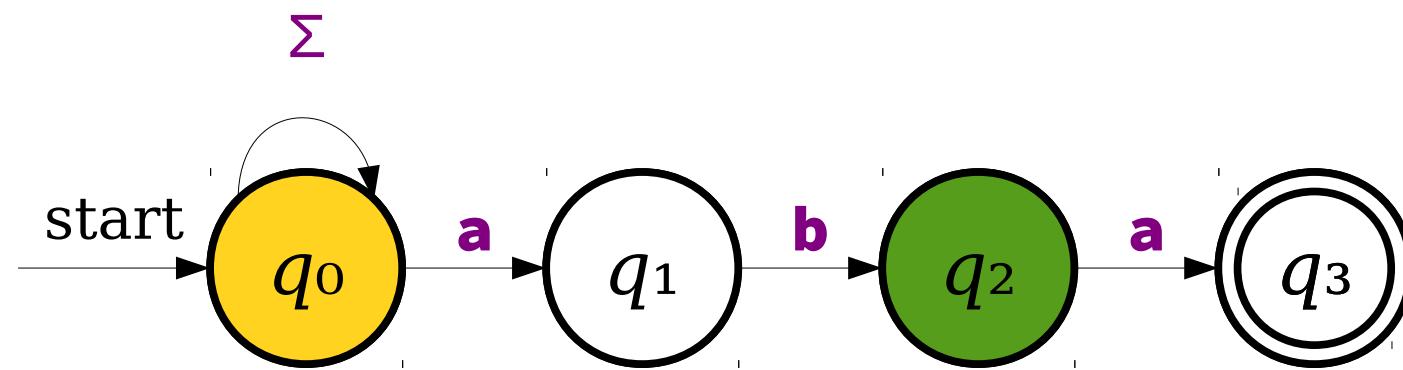
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$



	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

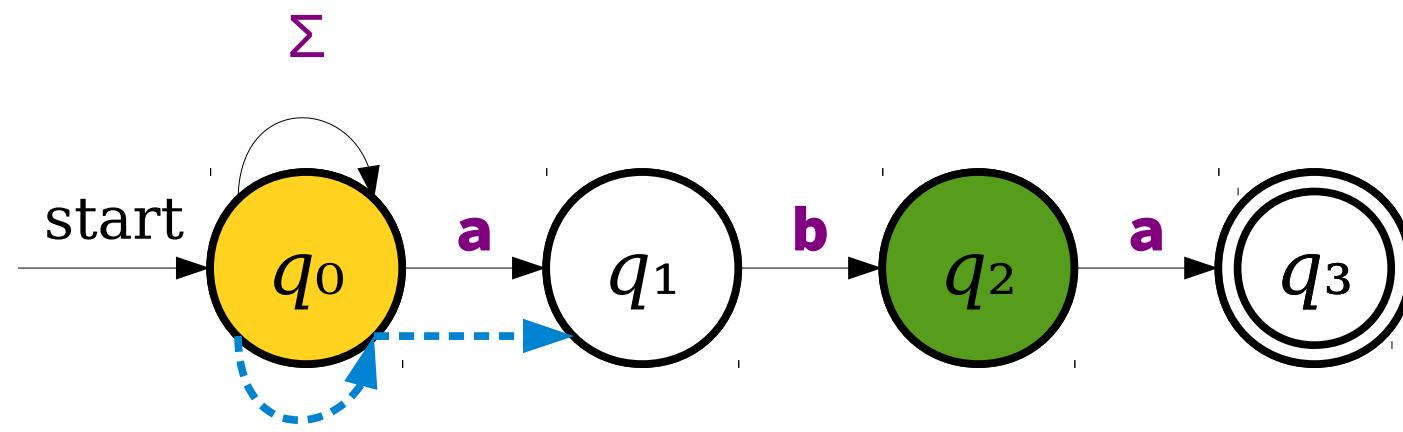


	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

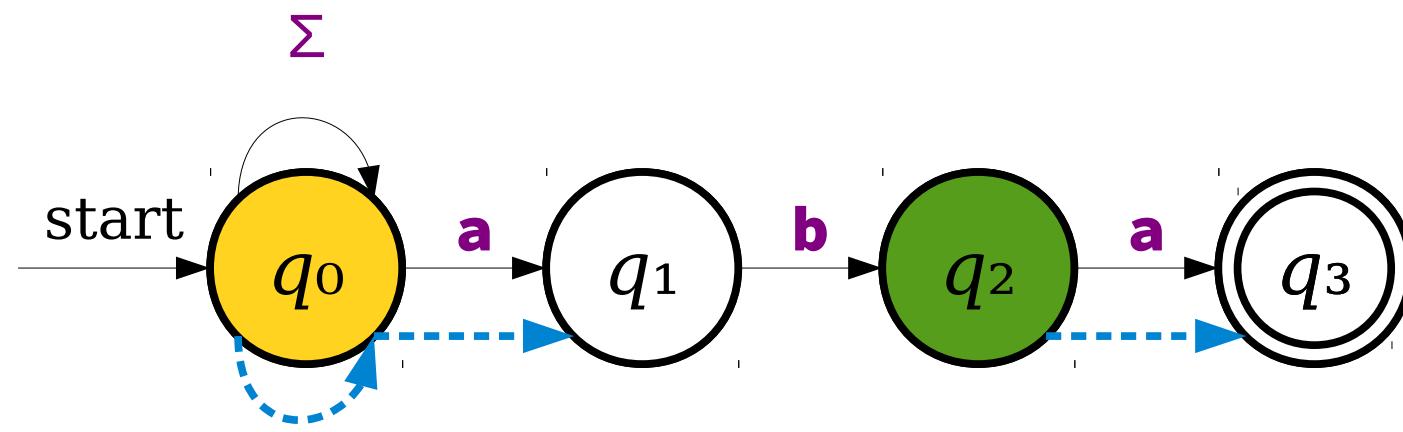


	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

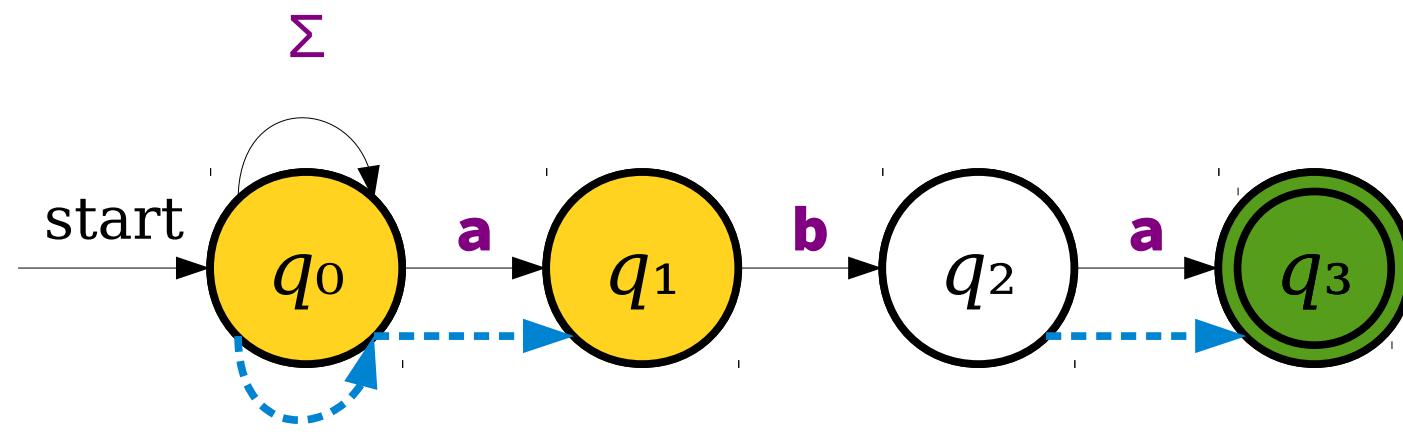
Quick check:
 What are the contents
 of the next row?
 Answer like
 $a = \{ \dots \}$, $b = \{ \dots \}$
 all in one response.
 Go to
PollEv.com/cs103spr25



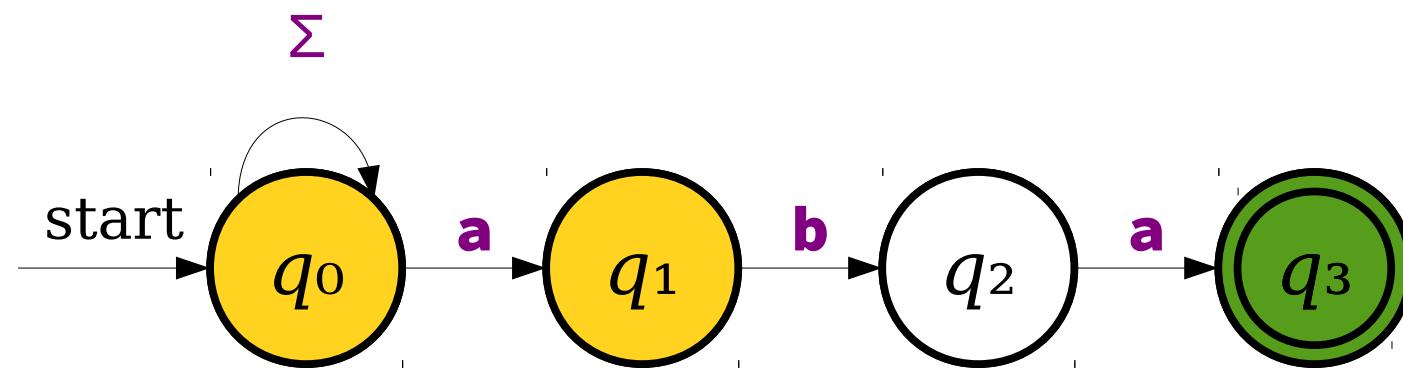
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		



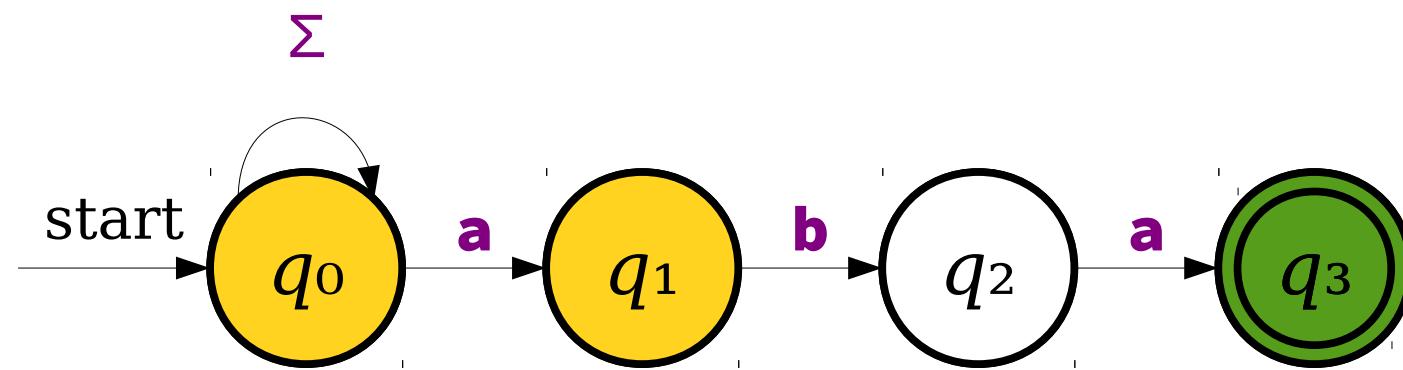
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		



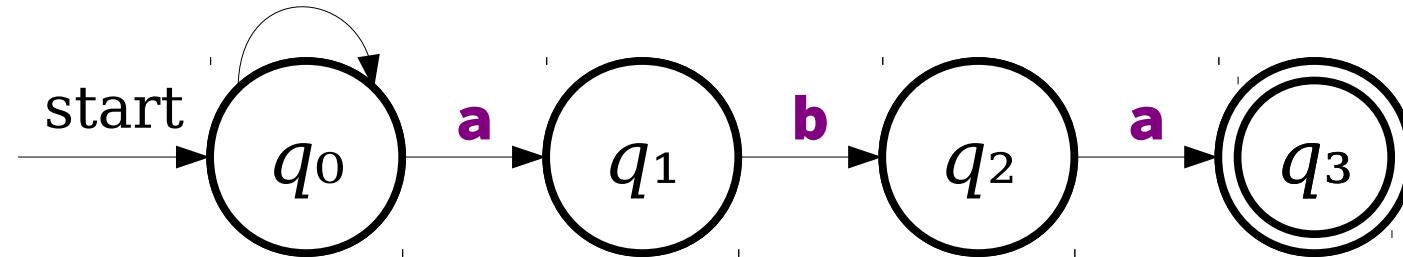
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		



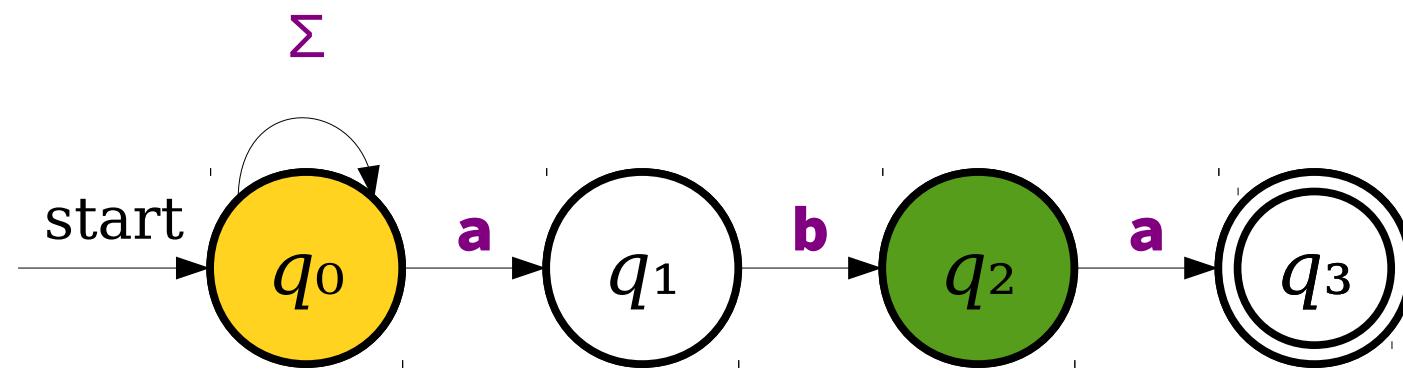
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		



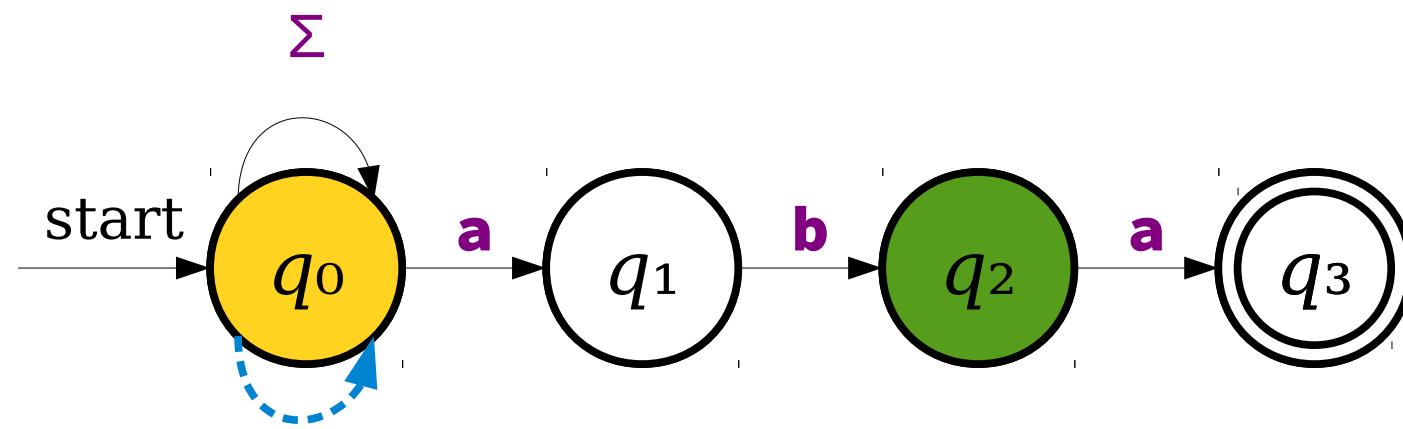
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

Σ 

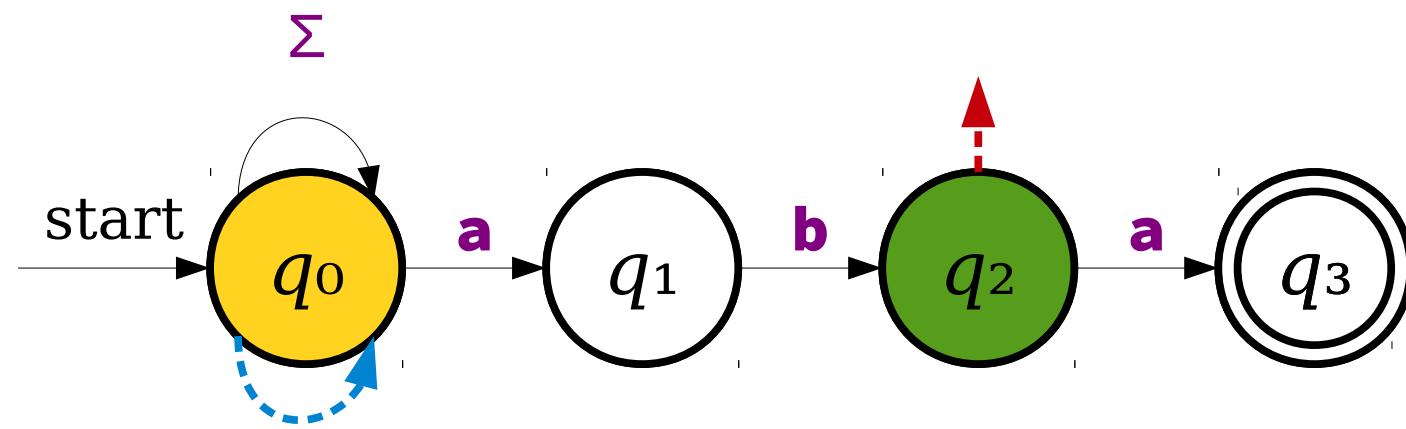
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	



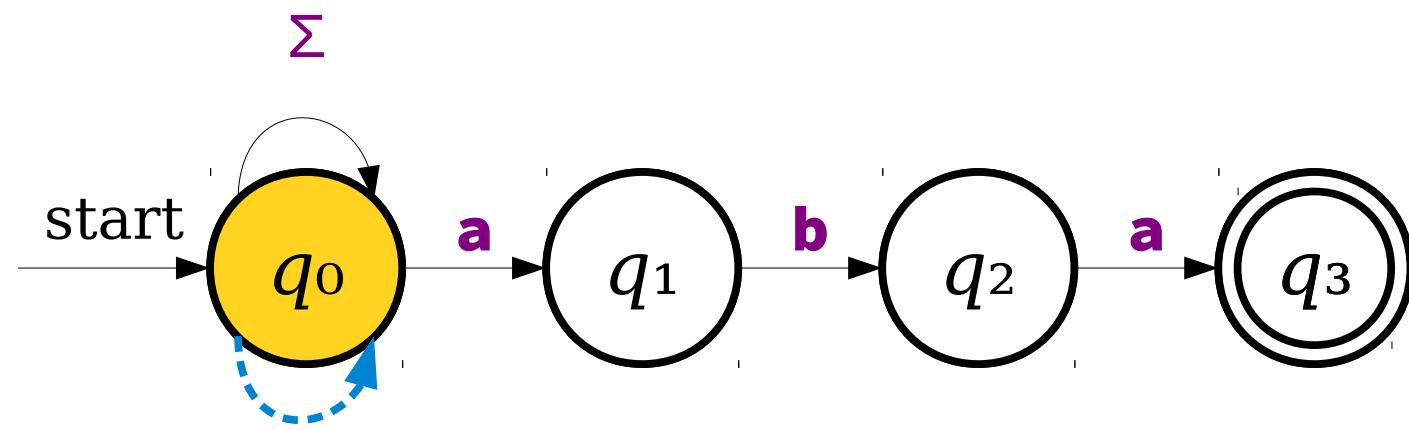
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	



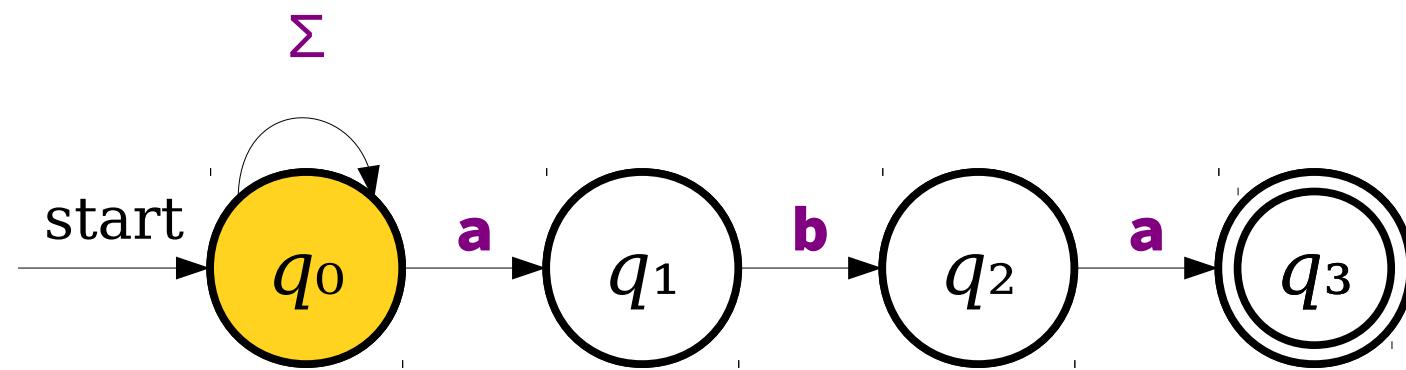
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	



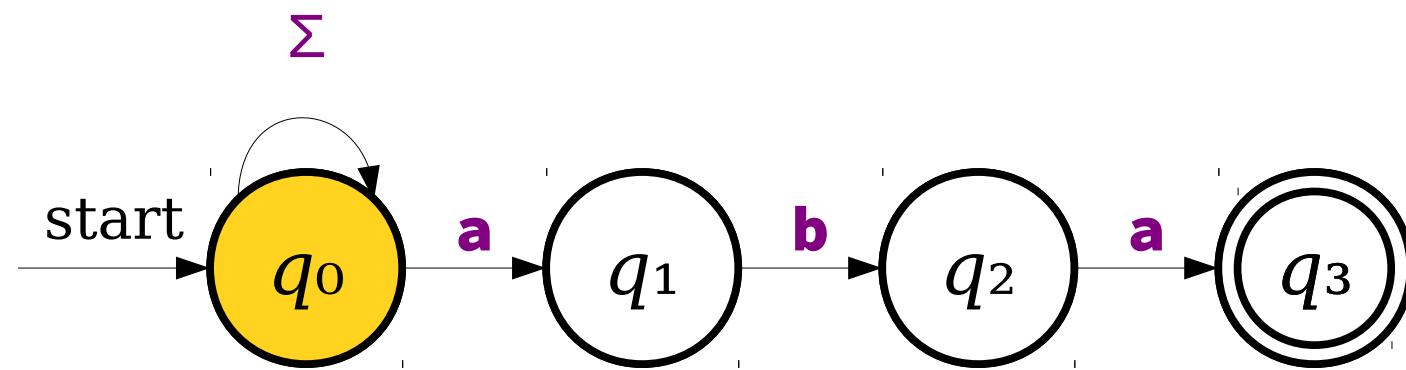
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	



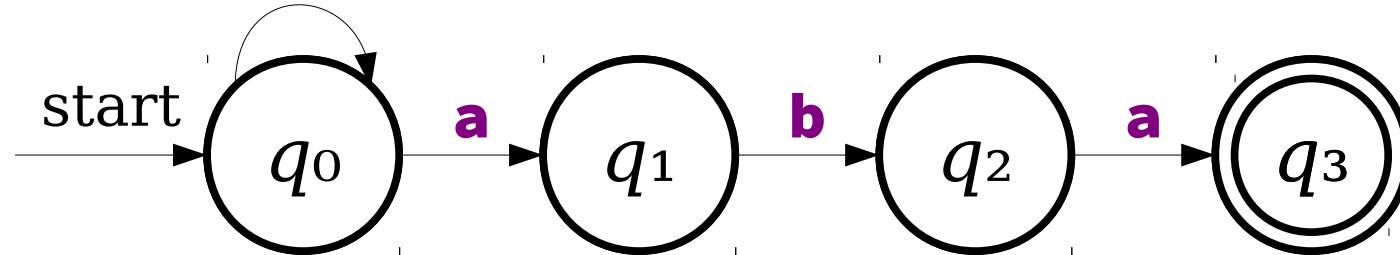
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	



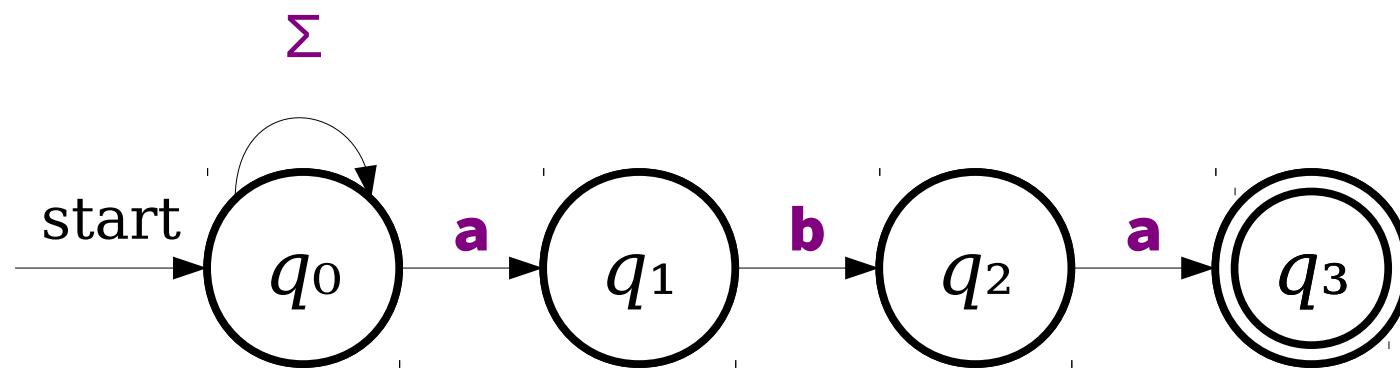
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	



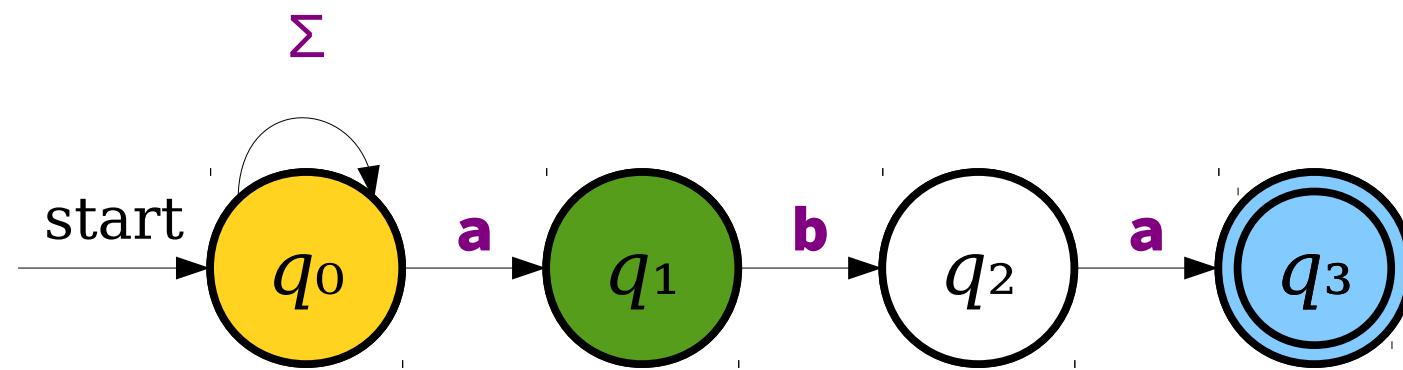
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$

Σ 

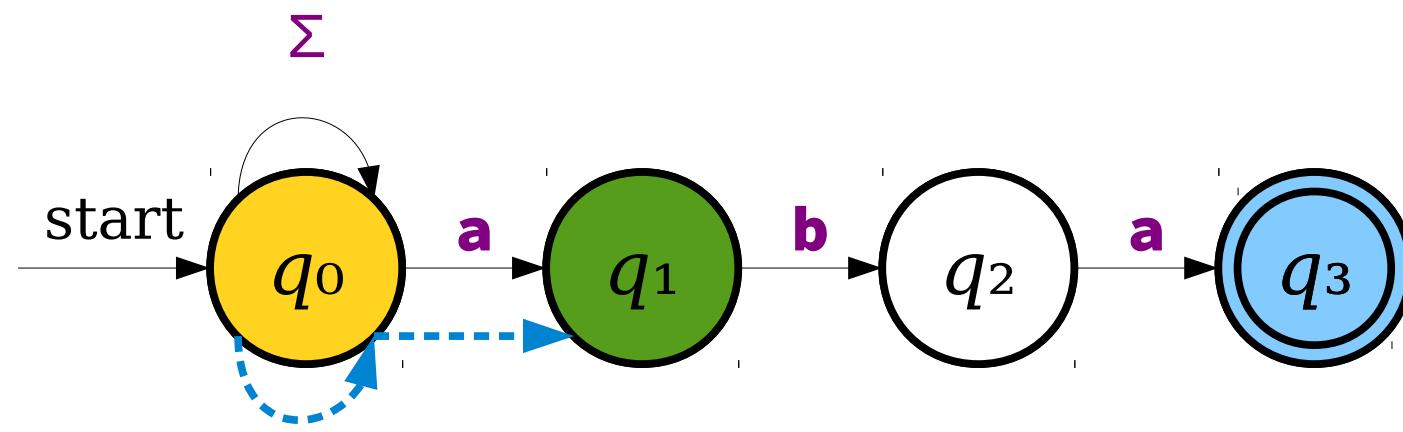
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$



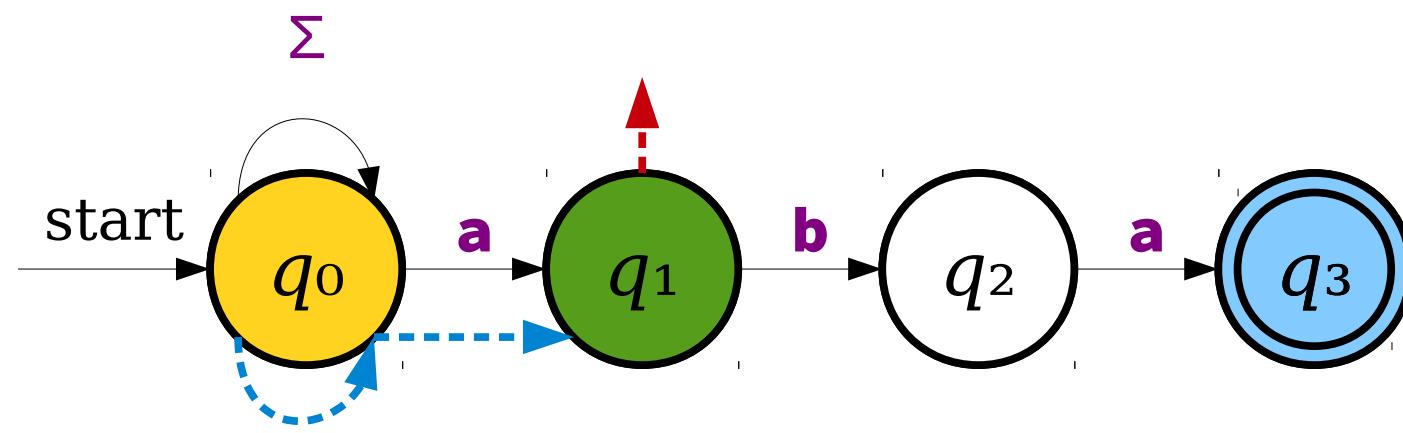
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		



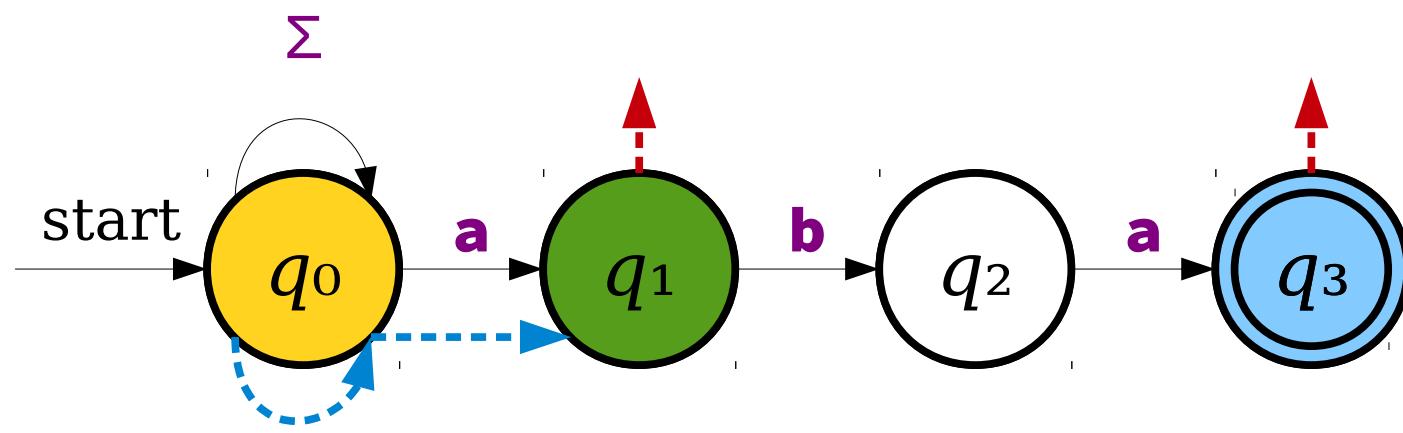
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		



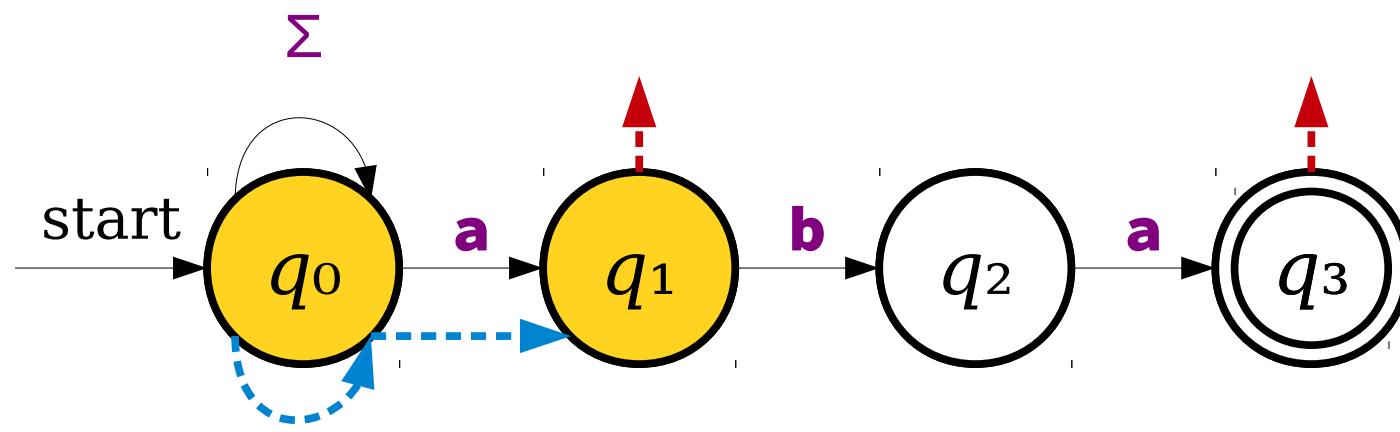
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		



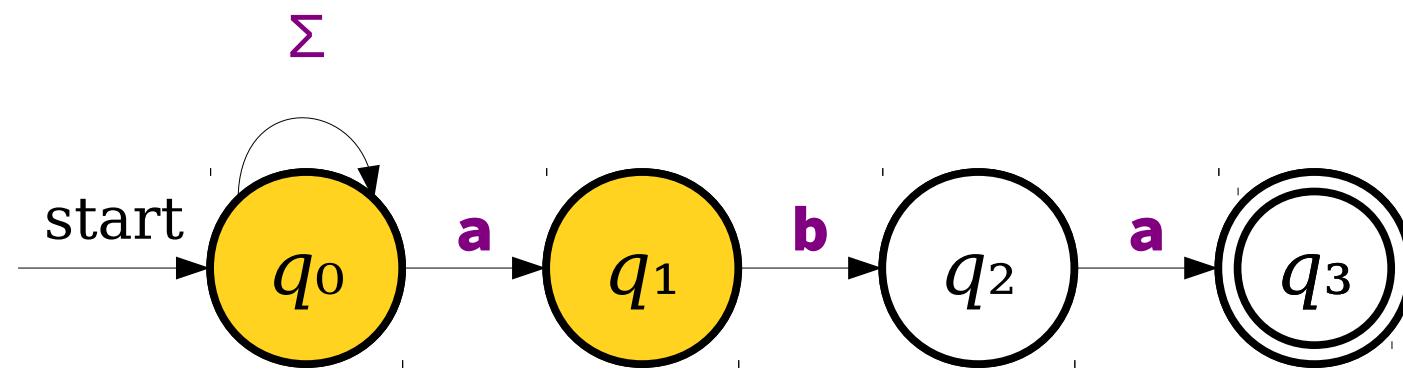
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		



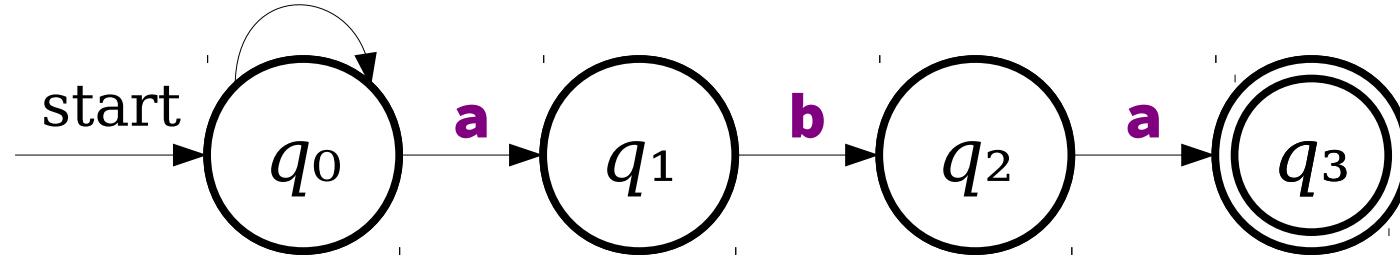
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		



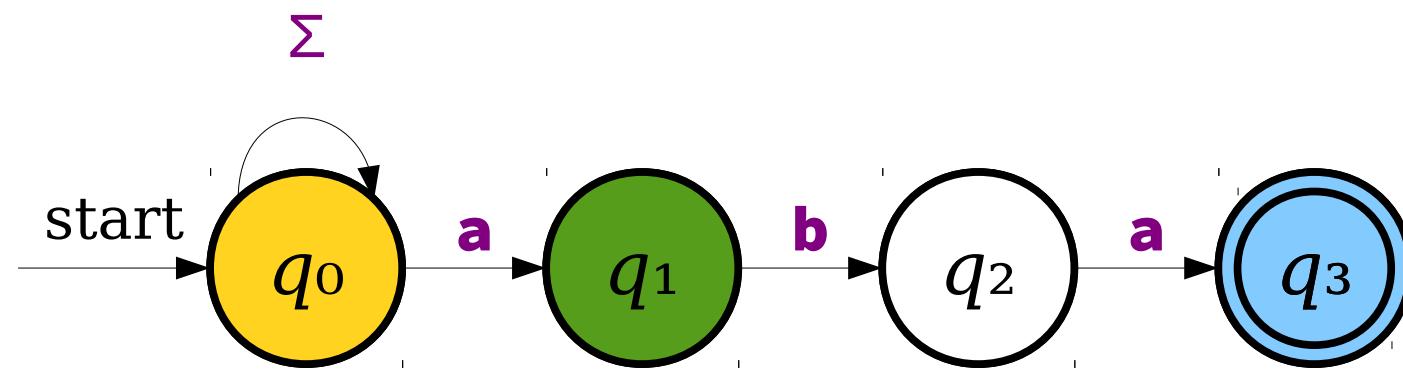
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		



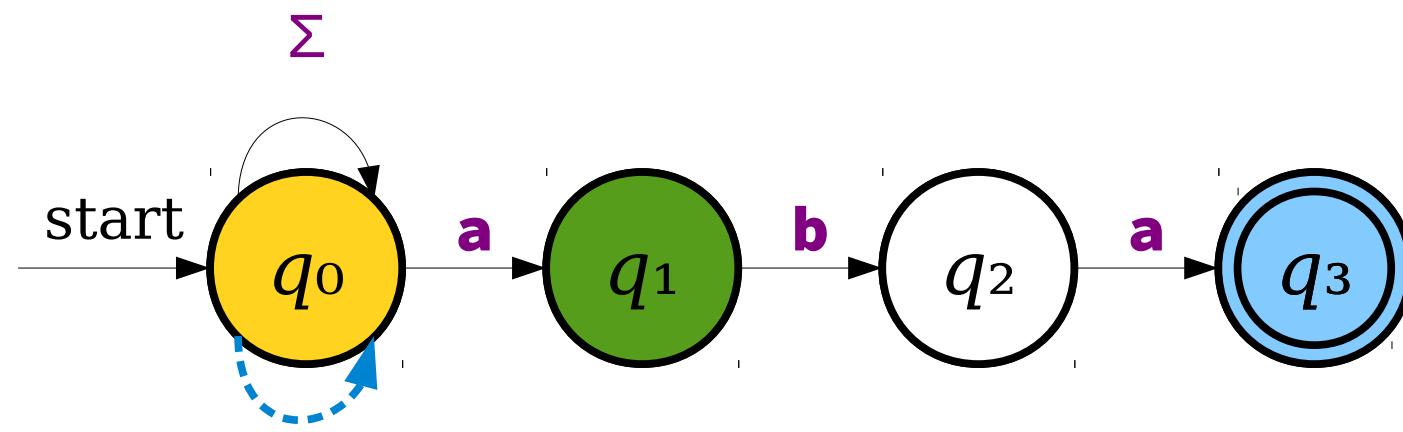
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

Σ 

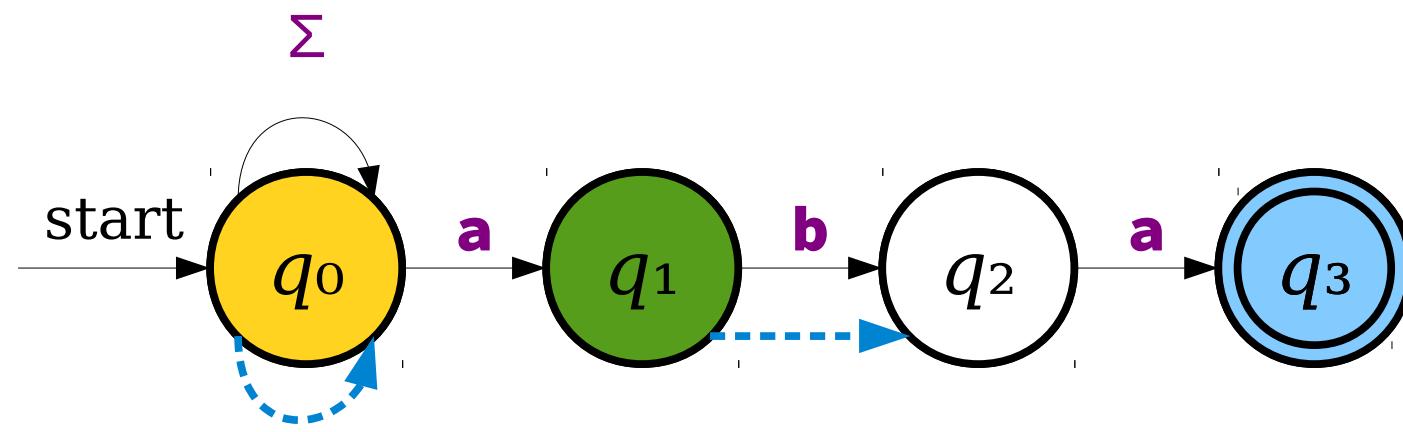
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	



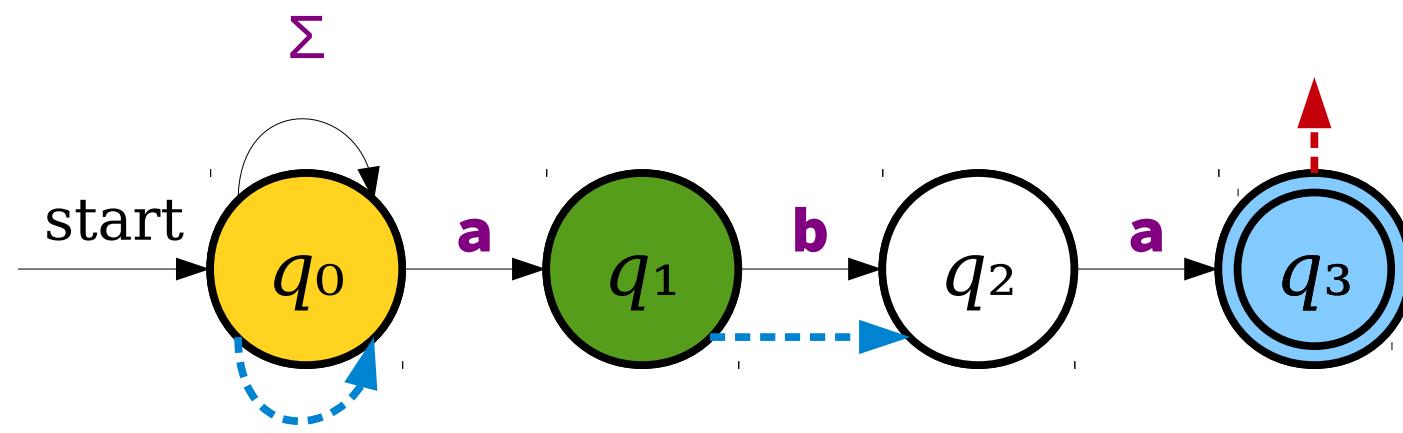
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	



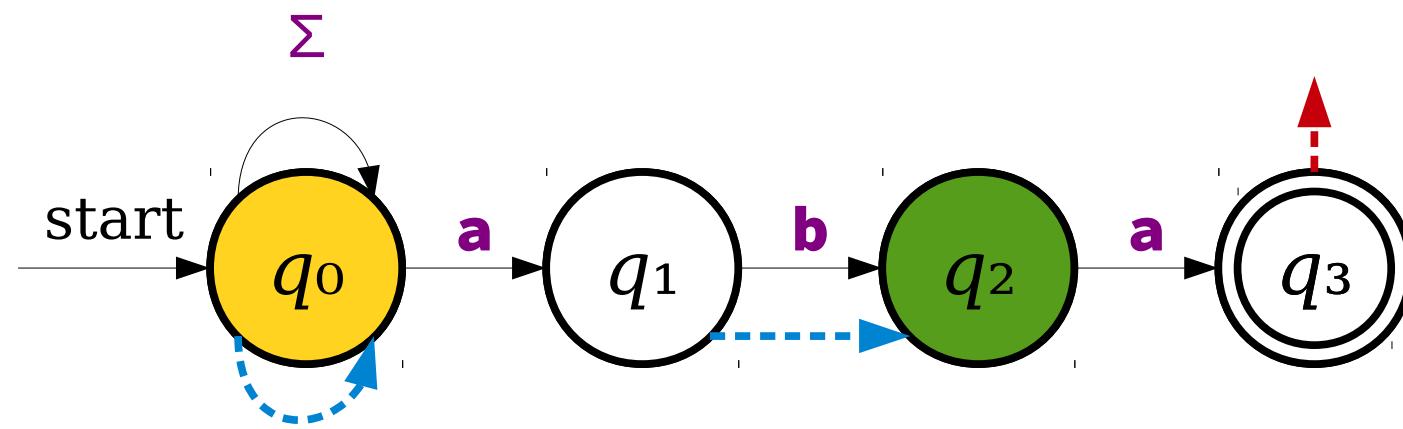
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	



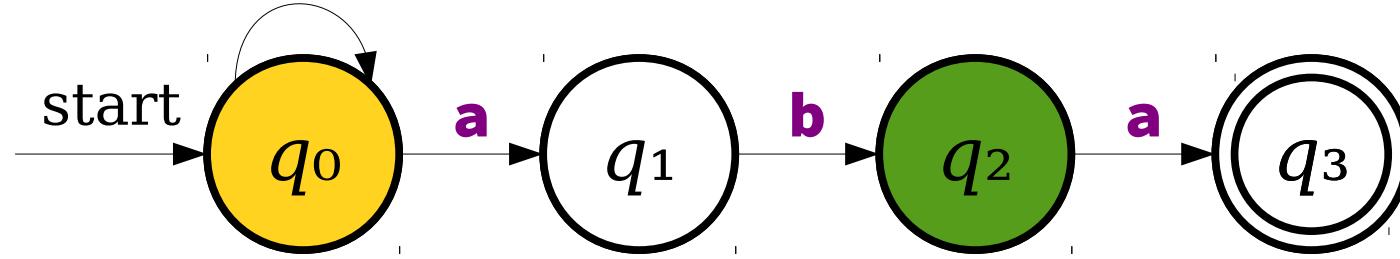
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	



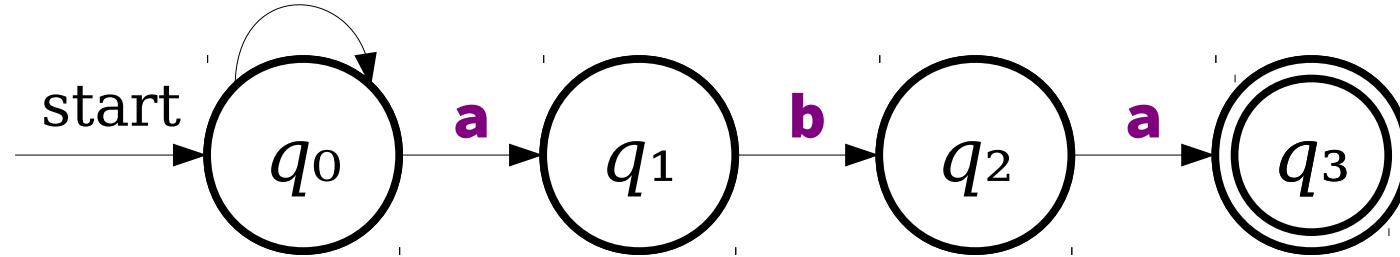
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	



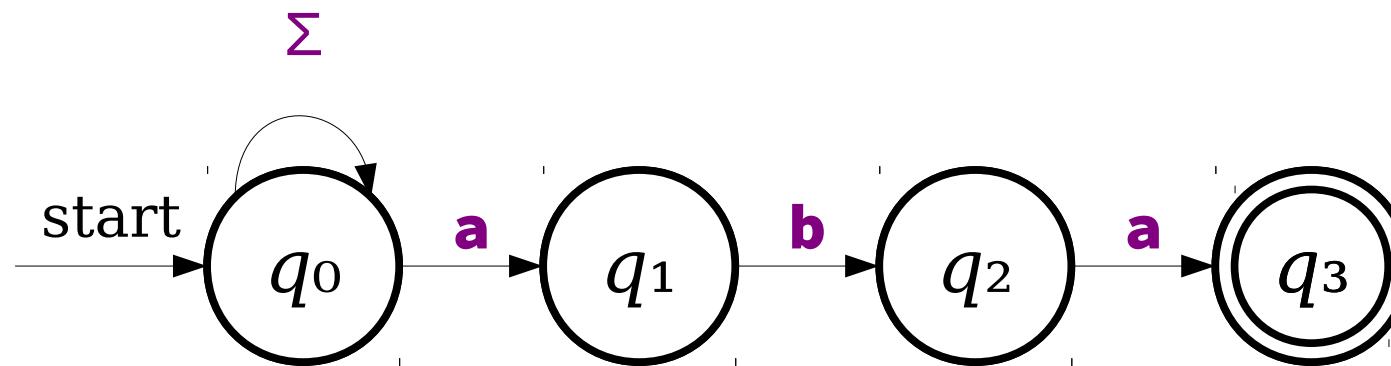
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

Σ 

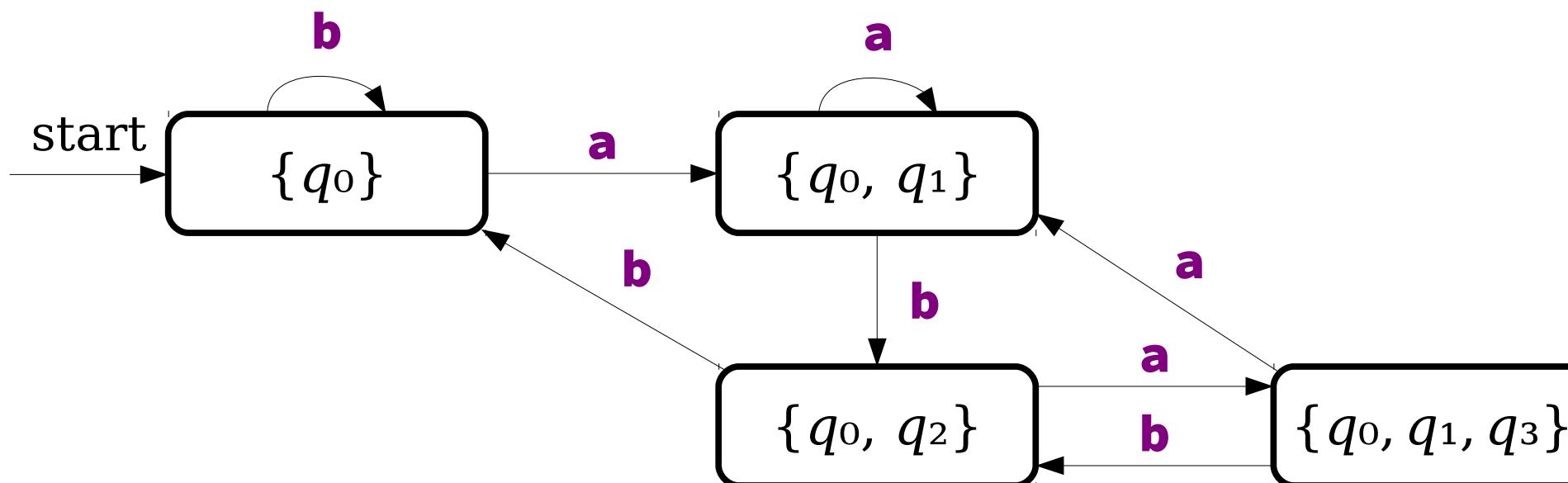
	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

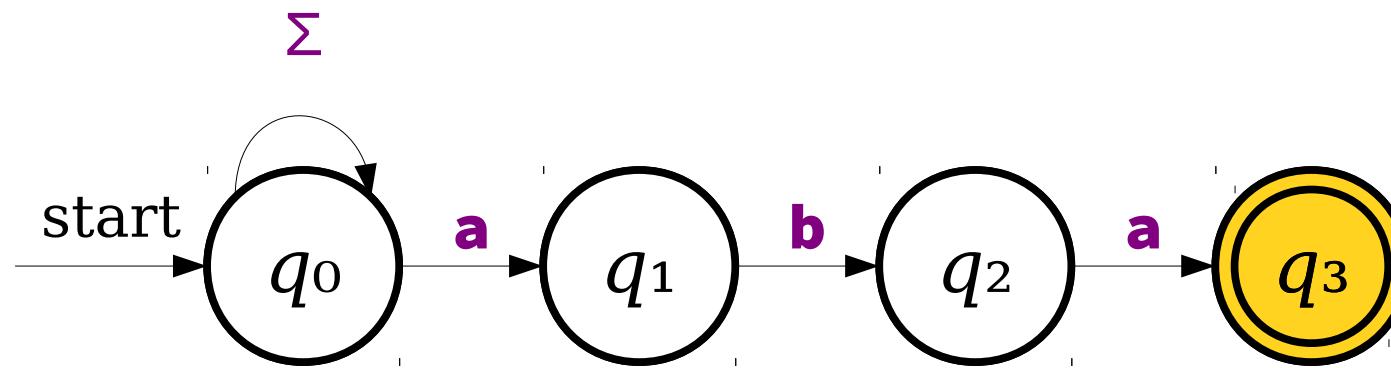
Σ 

	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

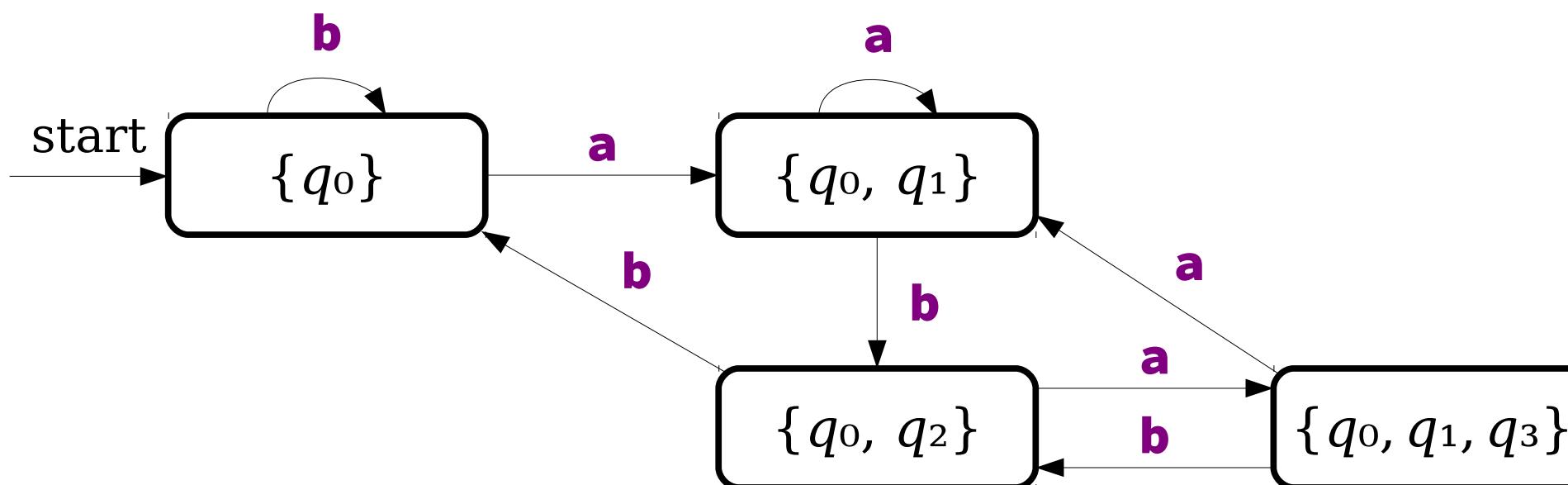


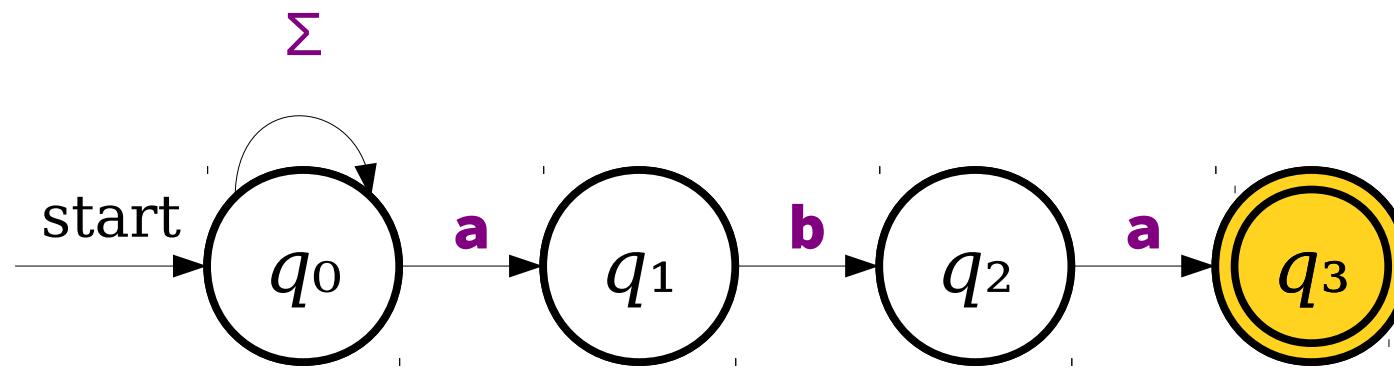
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$



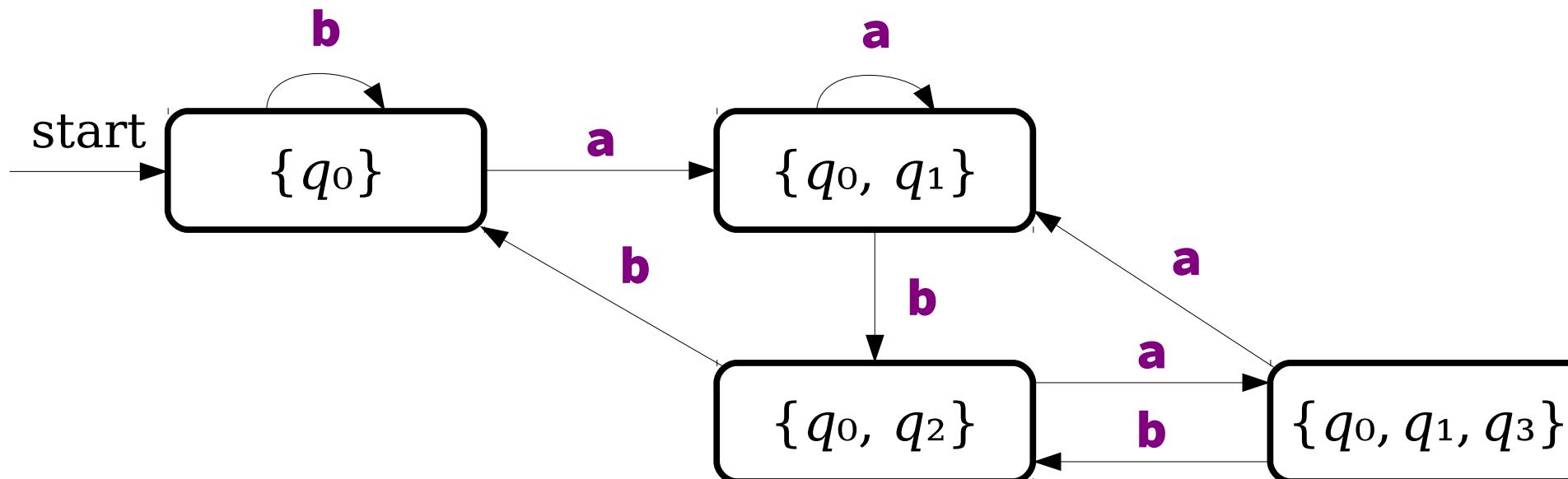


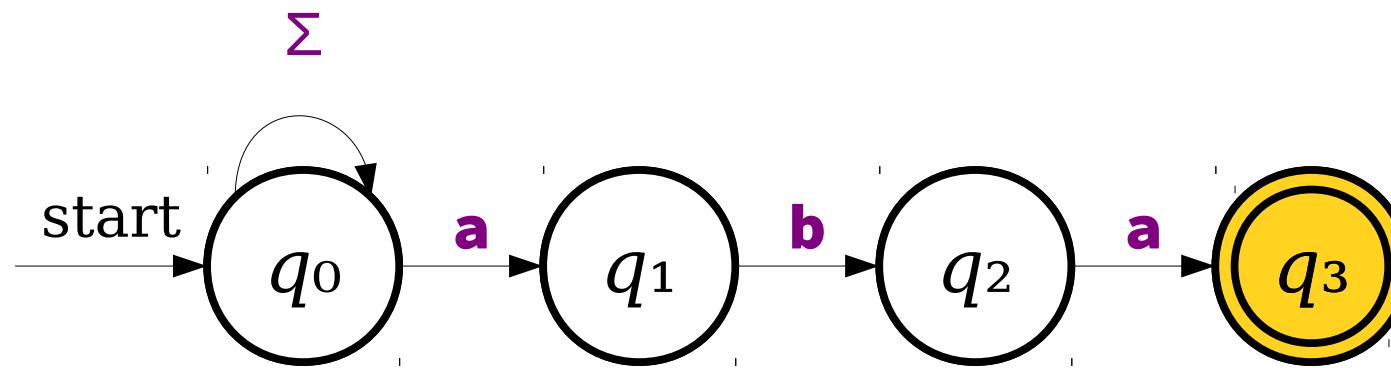
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$



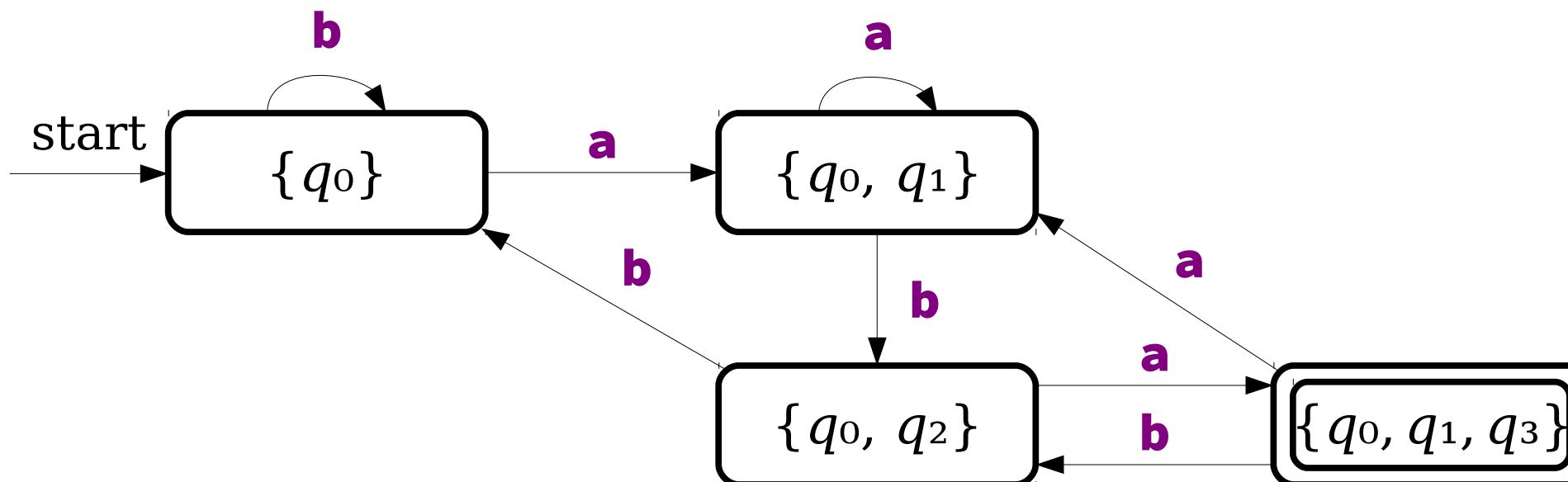


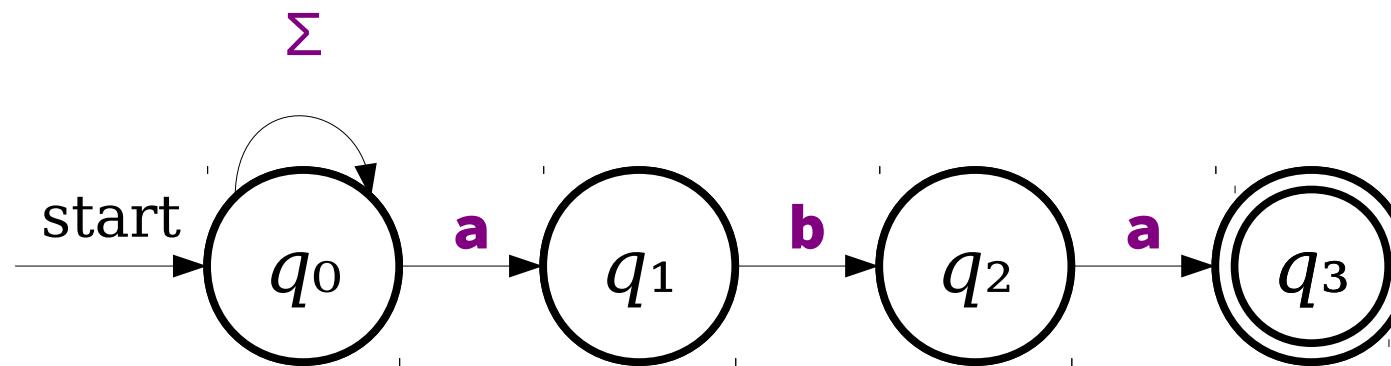
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$



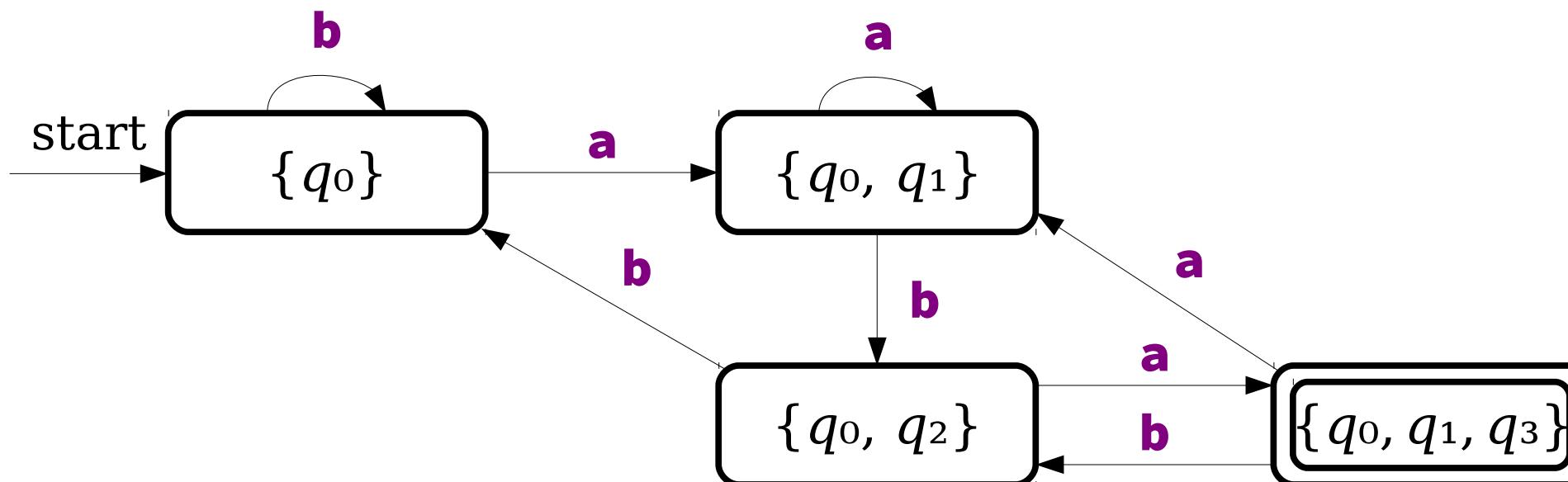


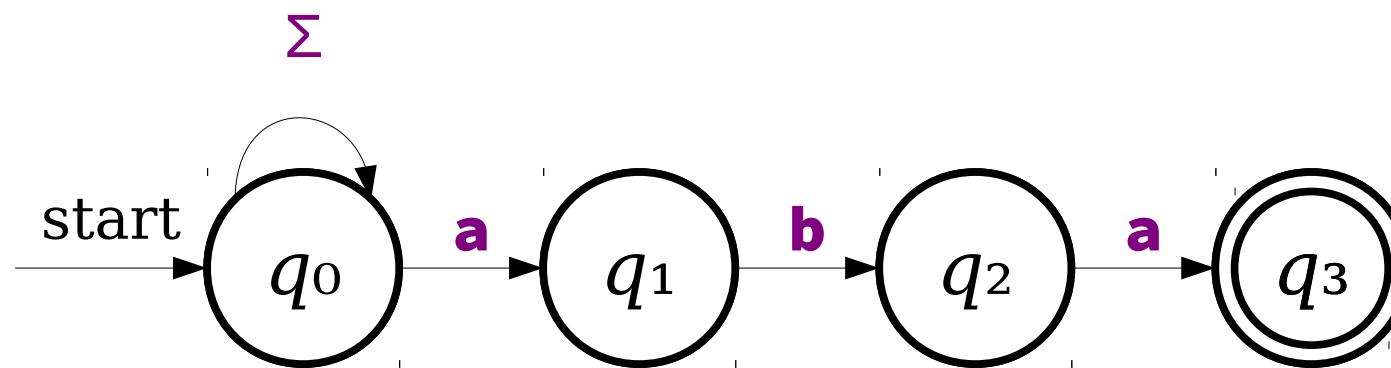
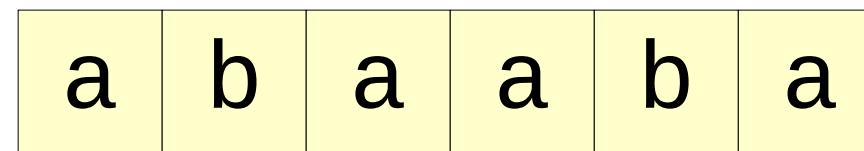
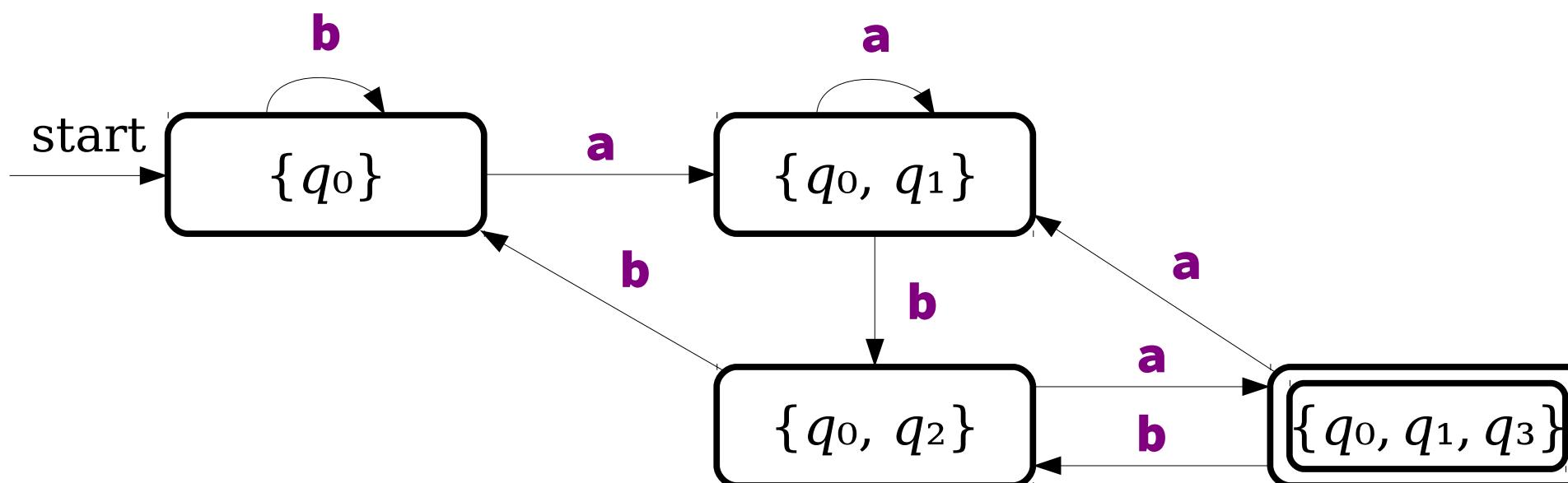
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

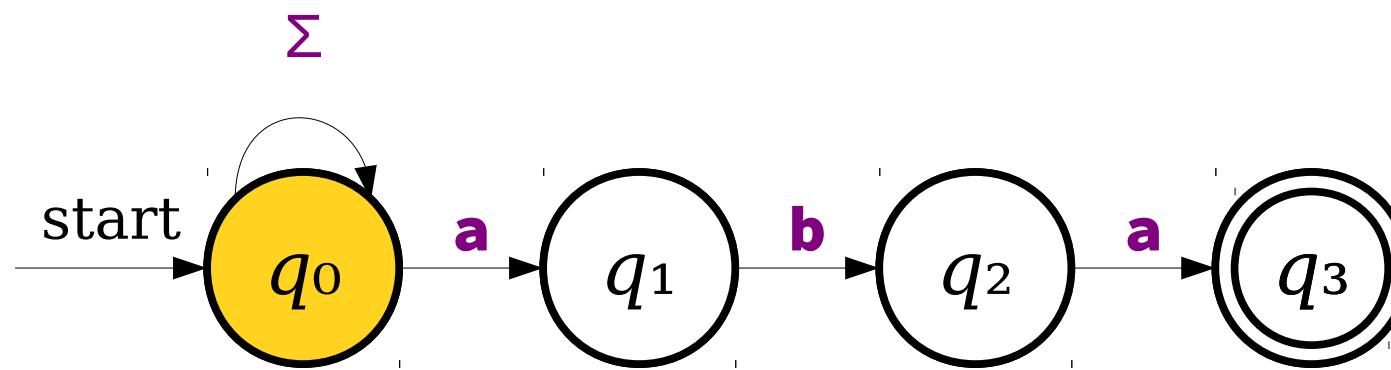
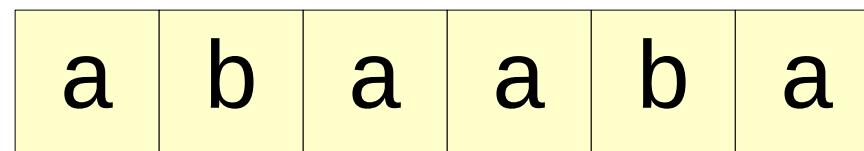
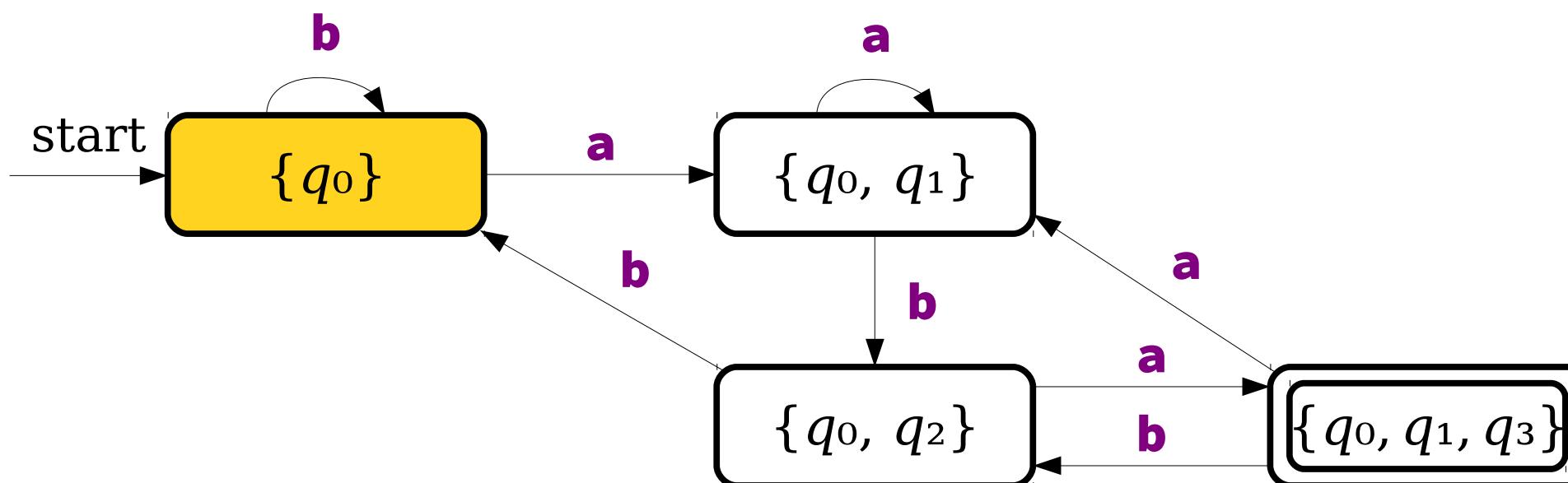


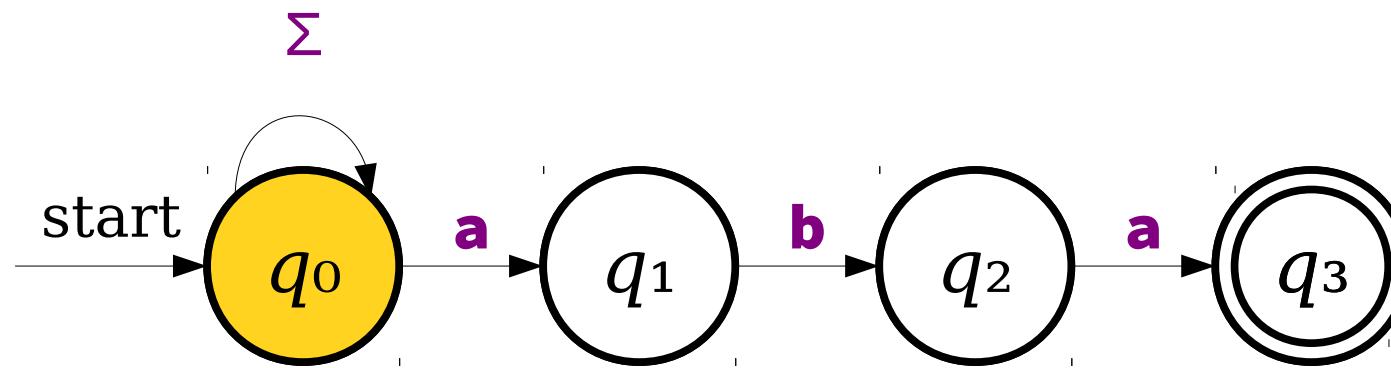
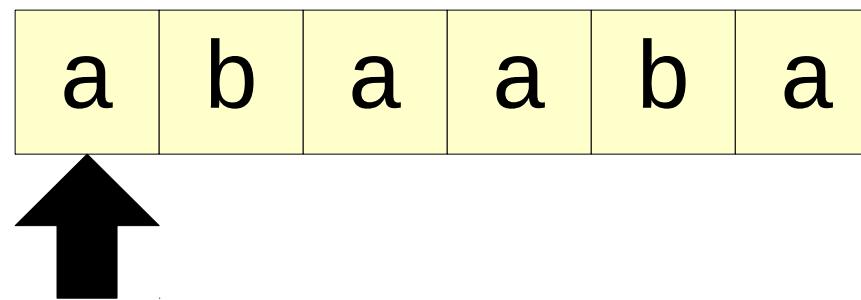
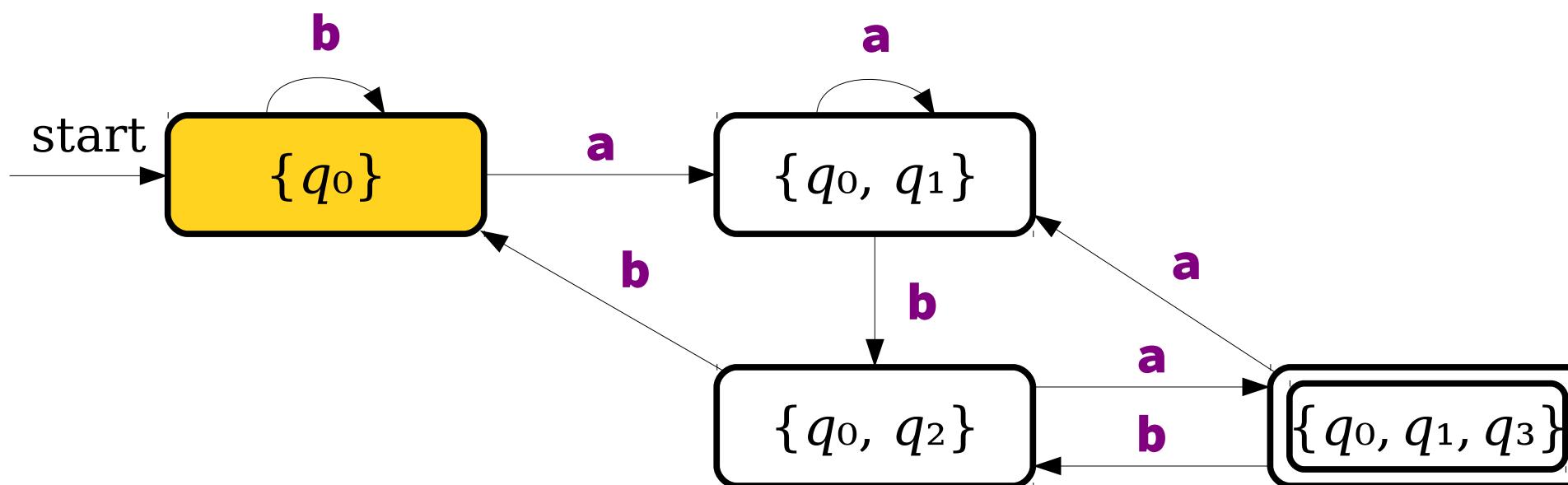


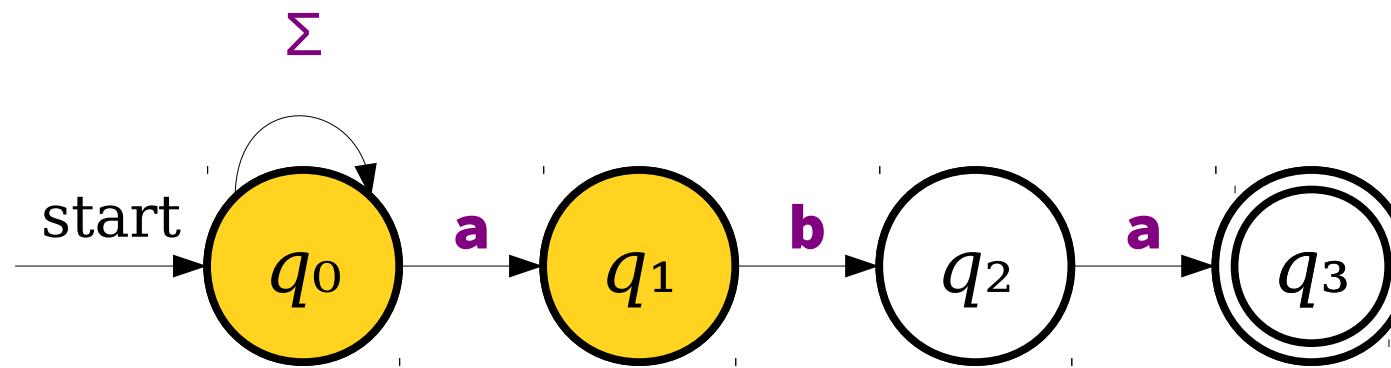
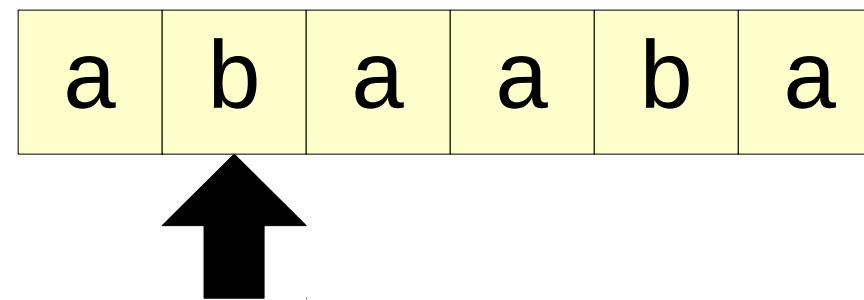
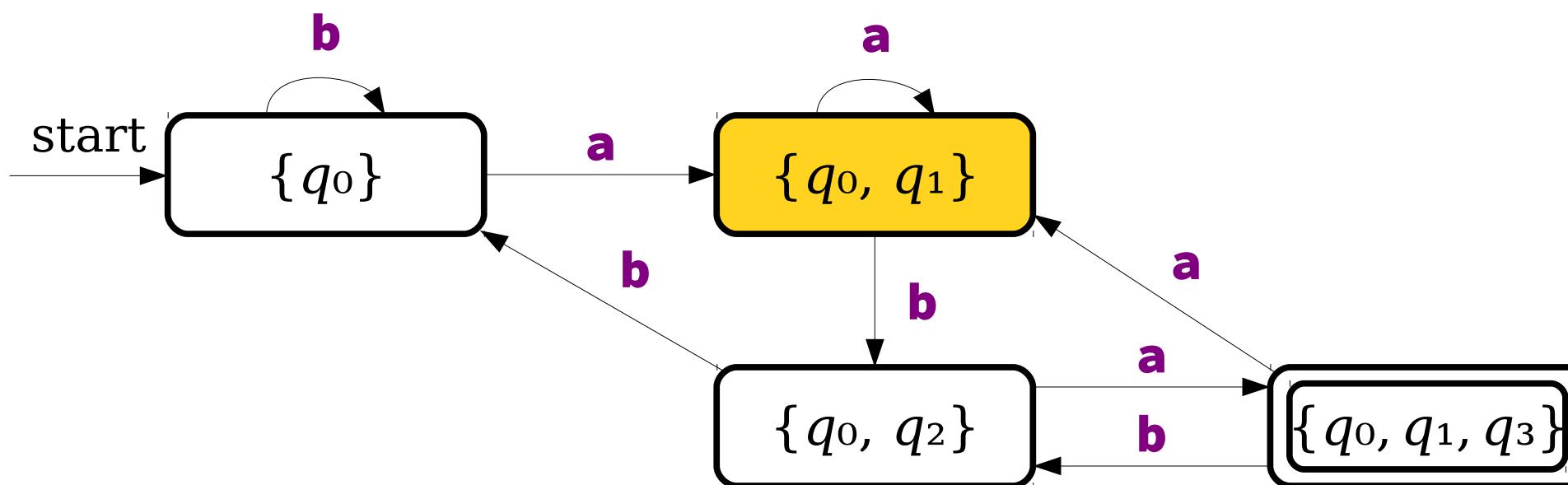
	<i>a</i>	<i>b</i>
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

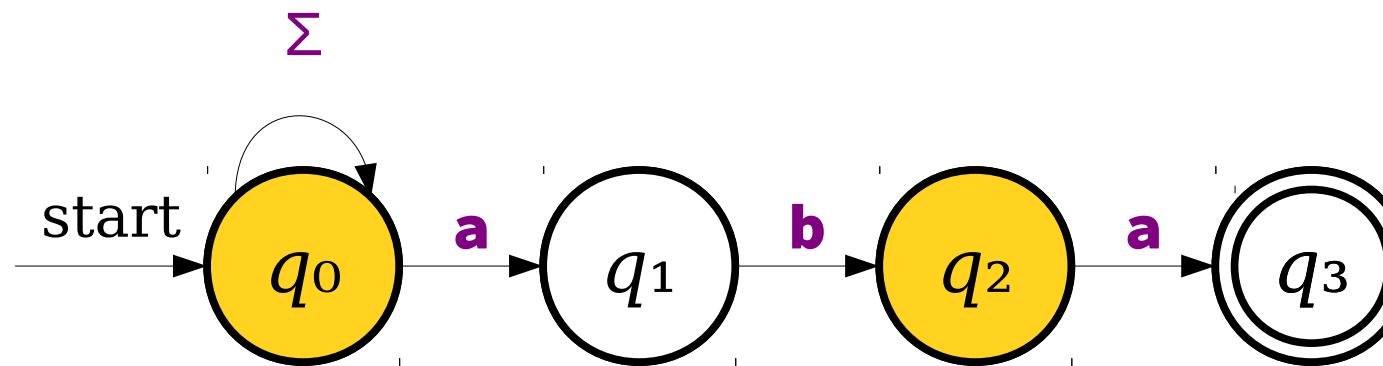
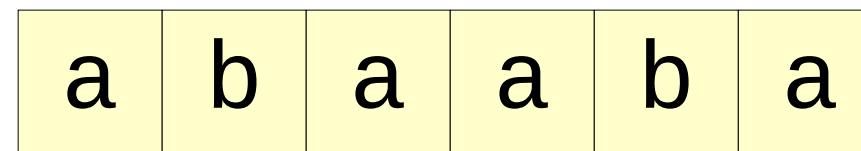
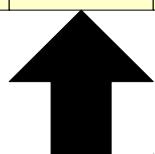
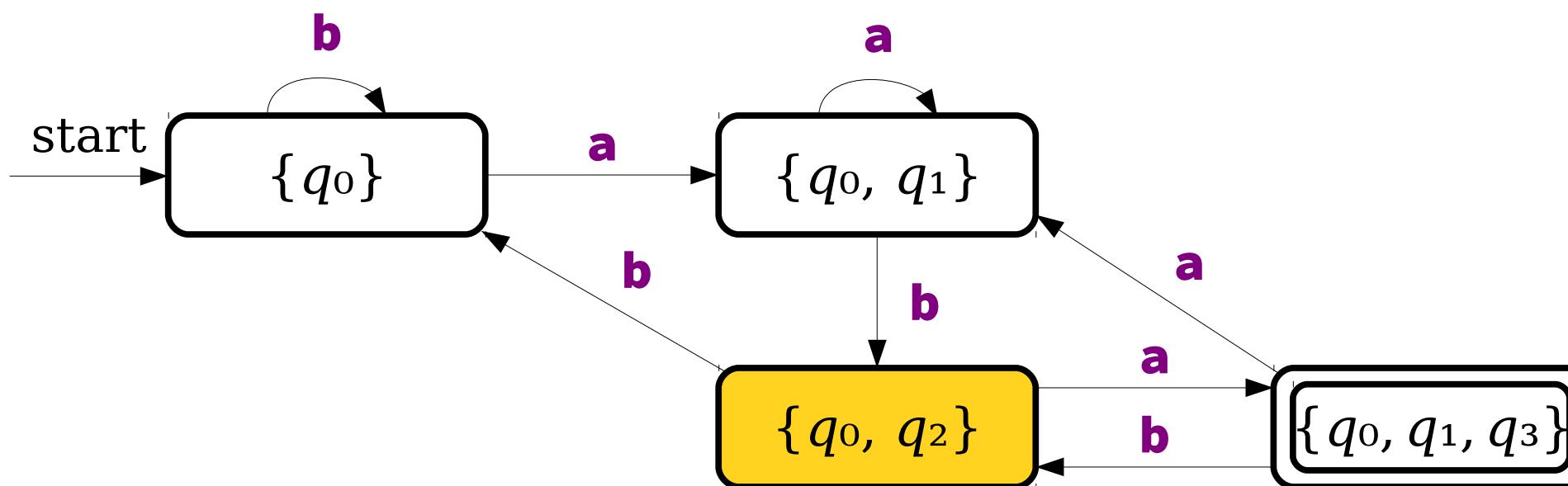


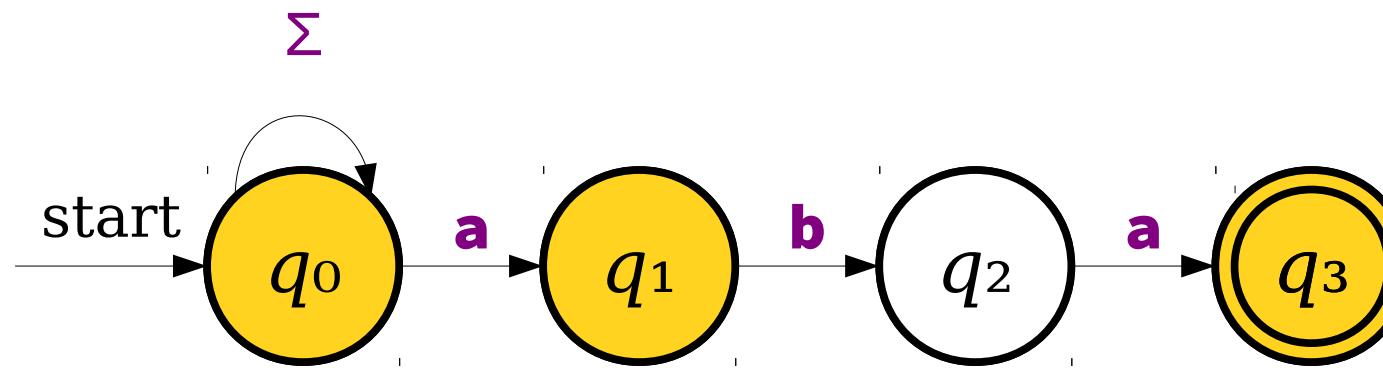
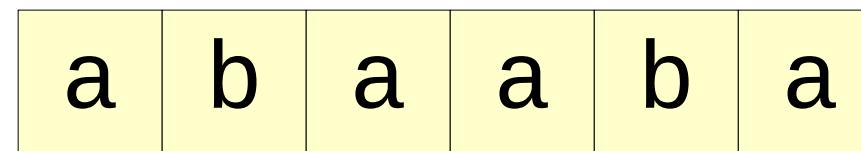
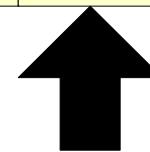
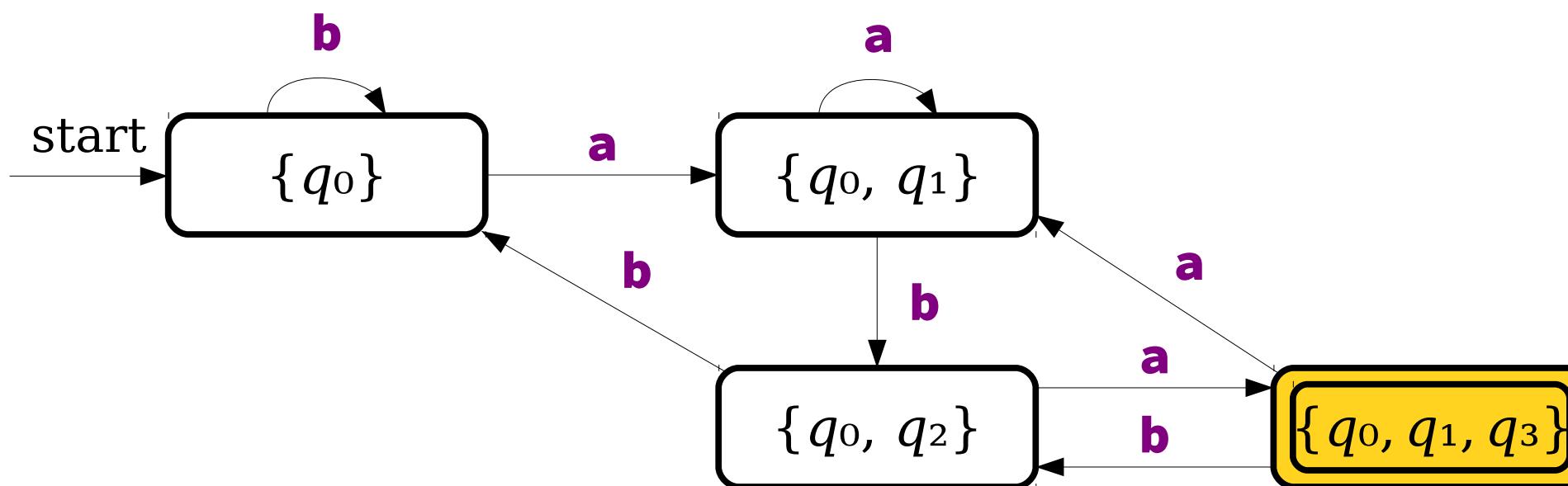


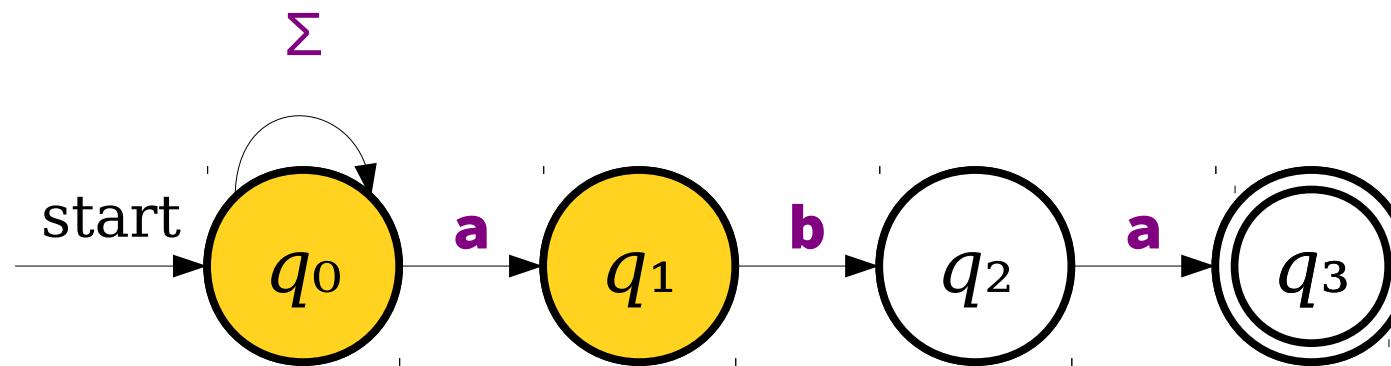
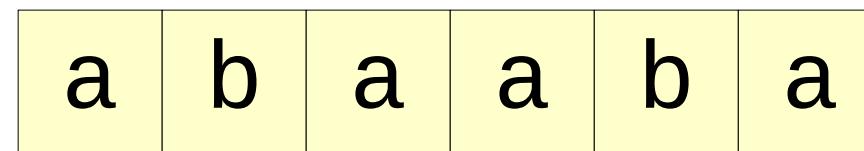
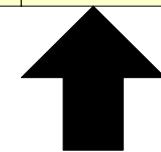
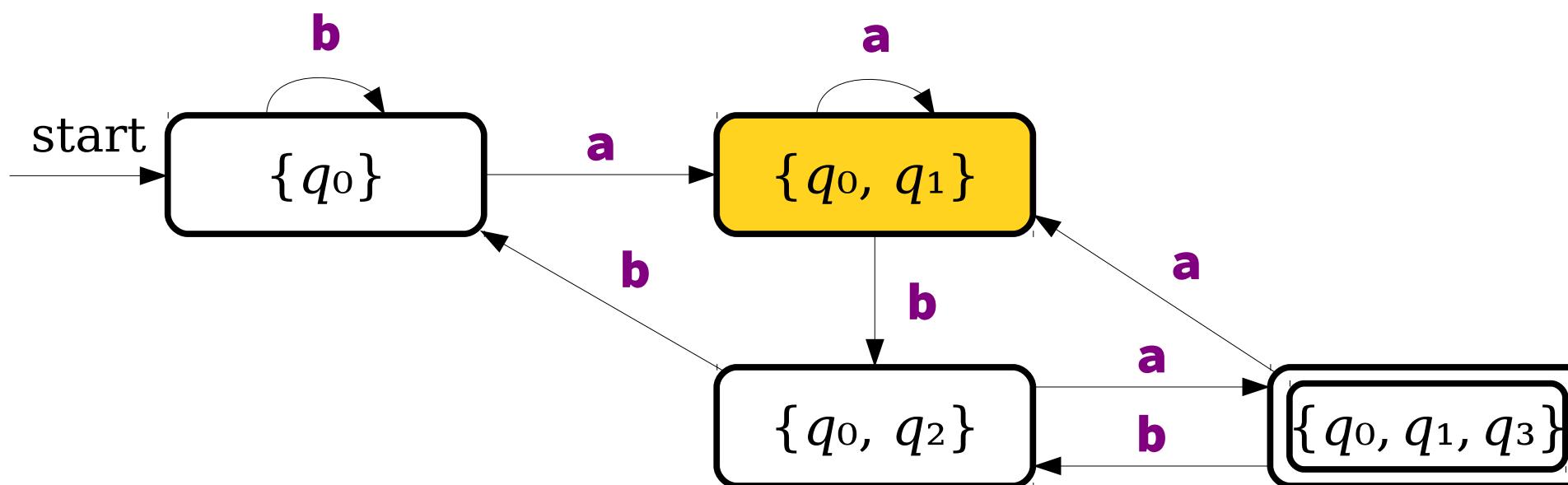


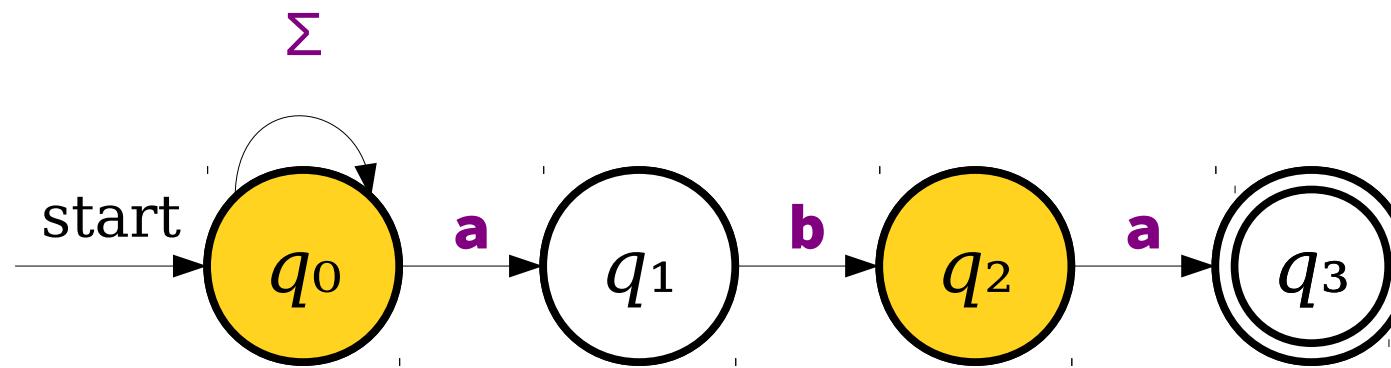
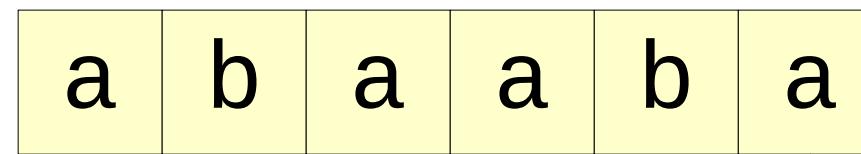
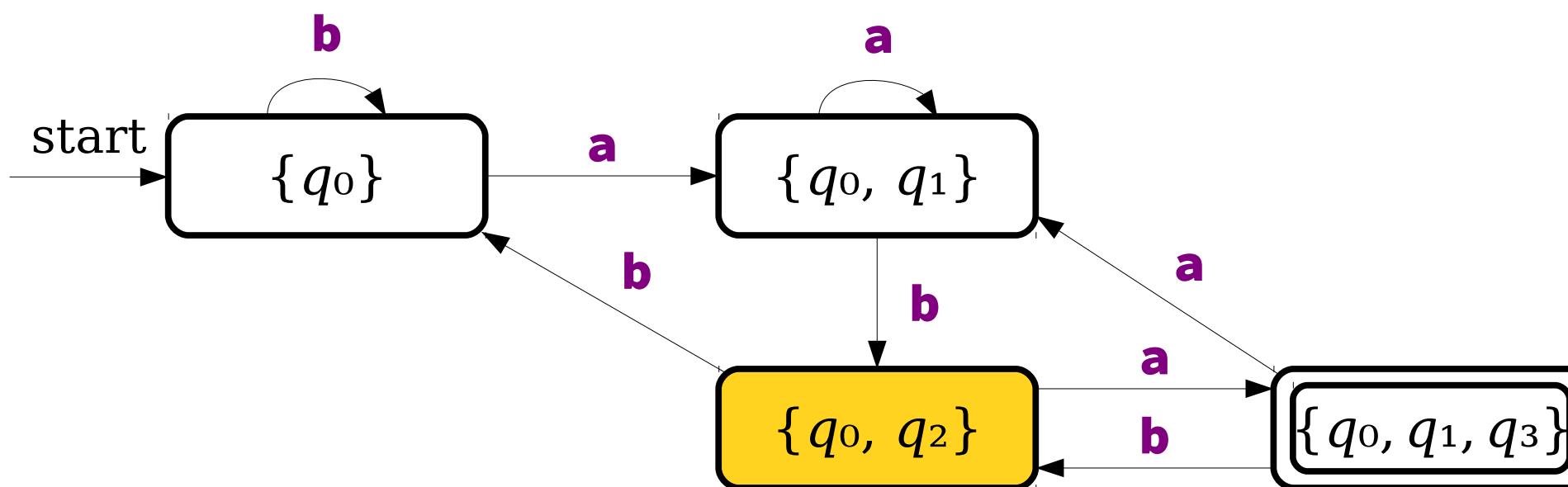


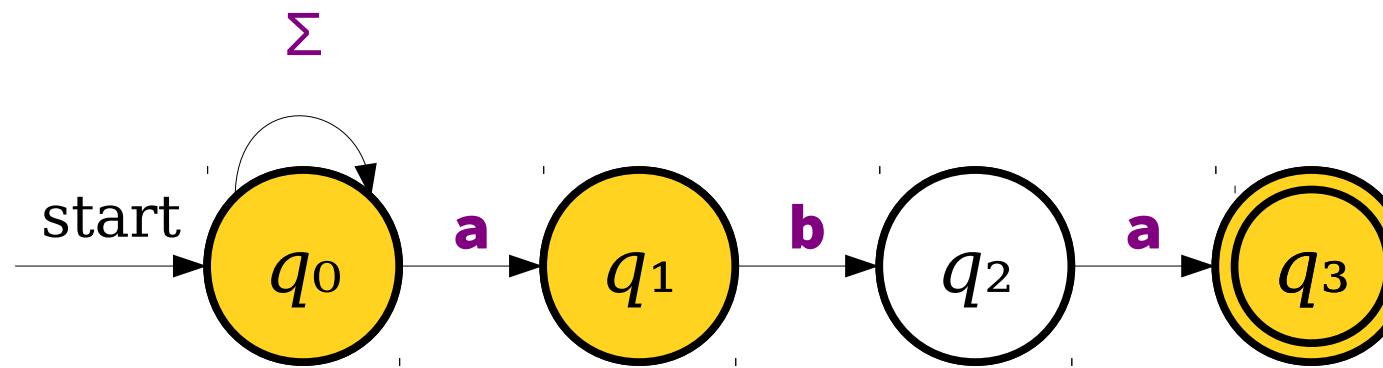
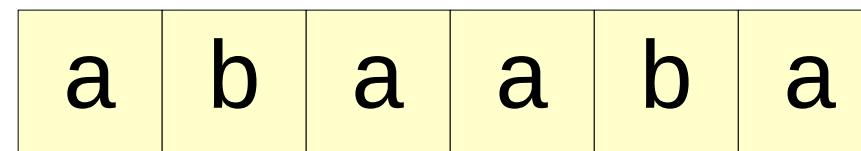
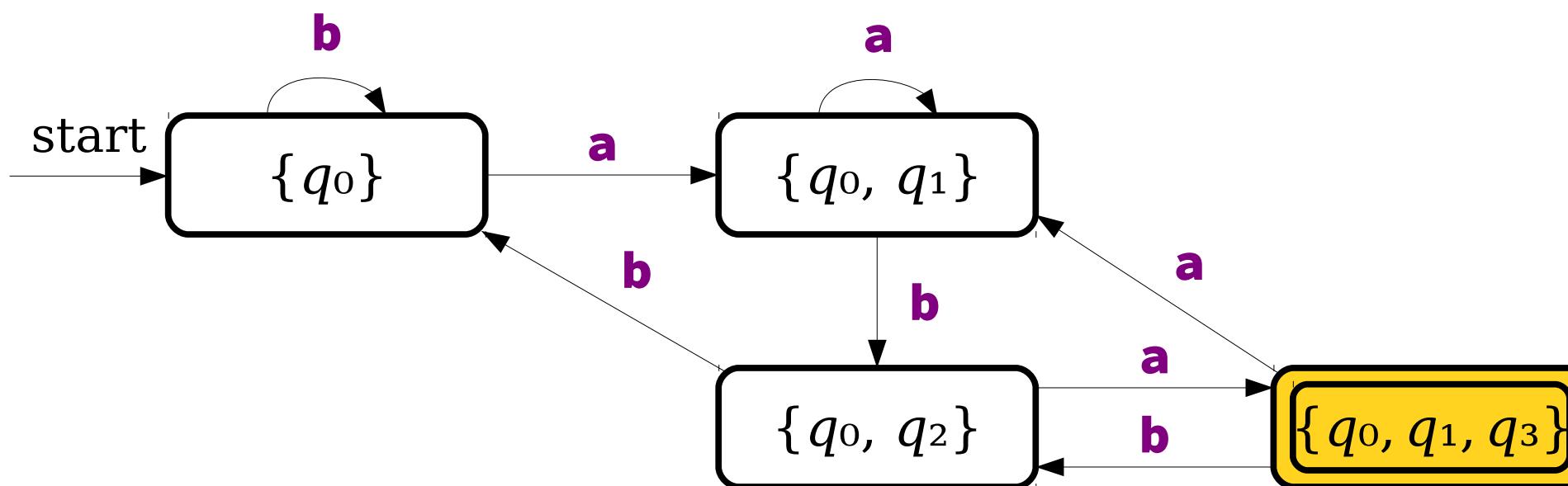












The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the ***subset construction***.
 - It's sometimes called the ***powerset construction***; it's different names for the same thing!
- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.
- There's an online ***Guide to the Subset Construction*** with a more elaborate example involving ϵ -transitions and cases where the NFA dies; check that for more details.

The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
 - **Useful fact:** $|\wp(S)| = 2^{|S|}$ for any finite set S .
- So, in the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.
- **Question to ponder:** Can you find a family of languages that have NFAs of size n , but no DFAs of size less than 2^n ?

Why This Matters

- We now have two perspectives on regular languages:
 - Regular languages are languages accepted by DFAs.
 - Regular languages are languages accepted by NFAs.
- We can now reason about the regular languages in two different ways.

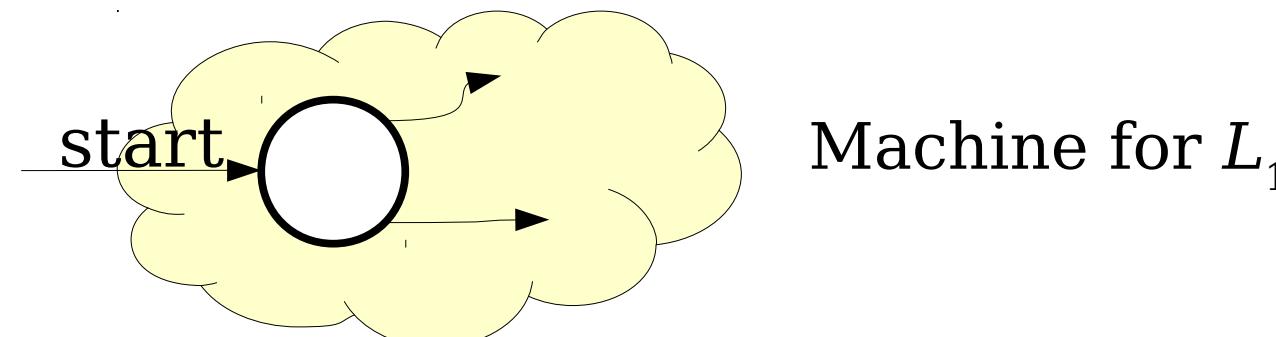
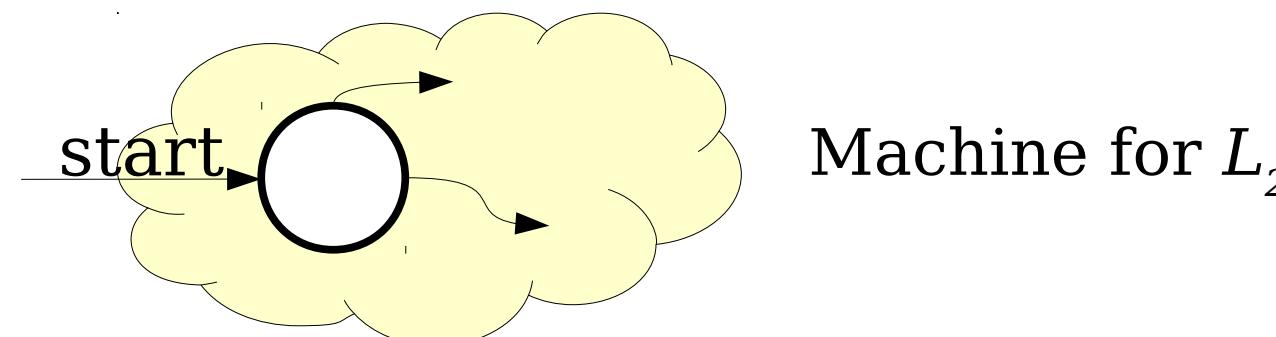
Properties of Regular Languages

The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

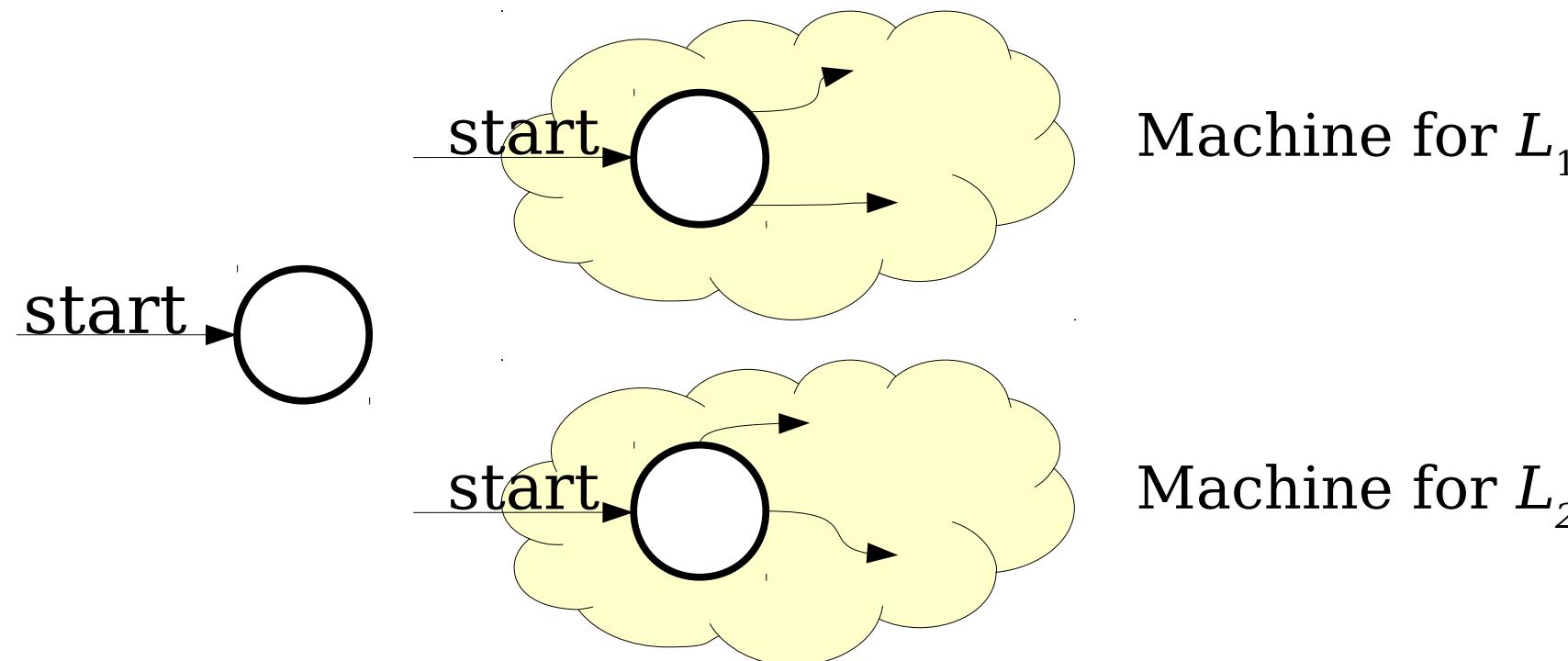
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?



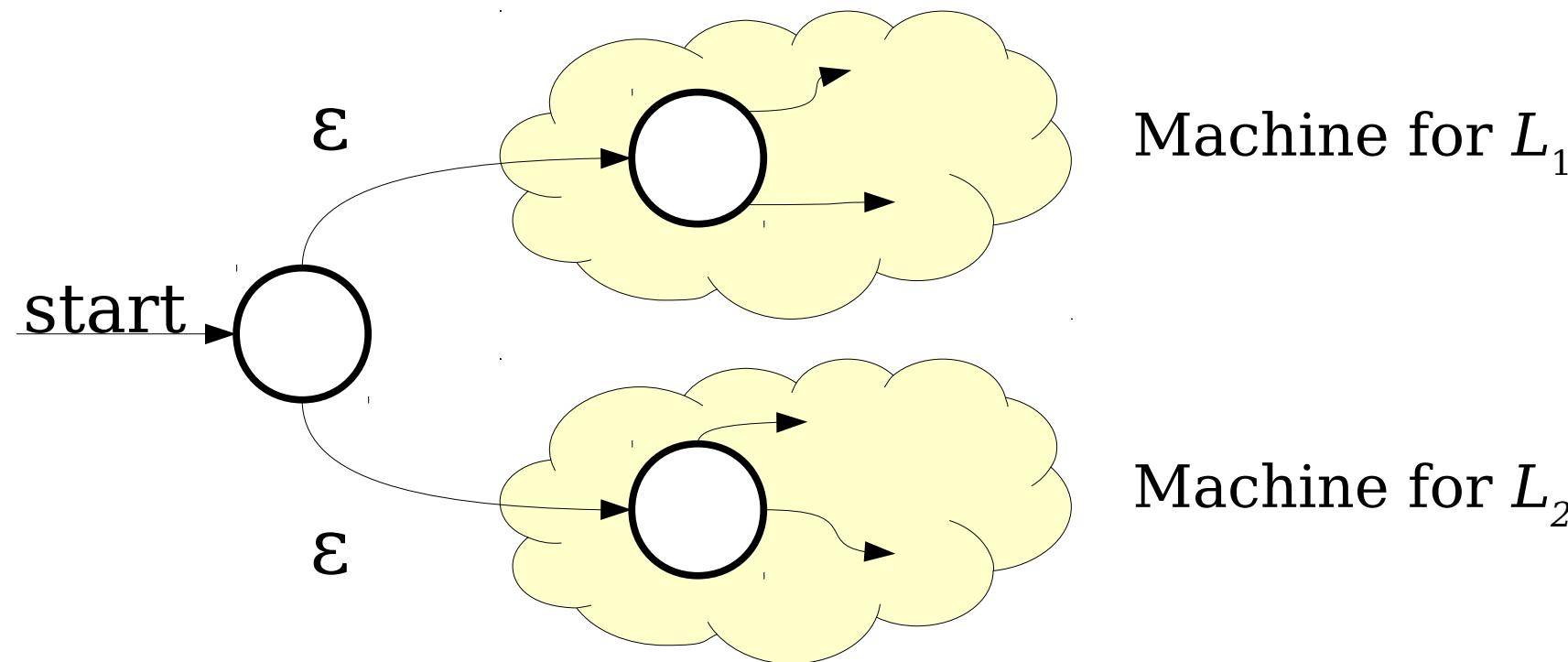
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?



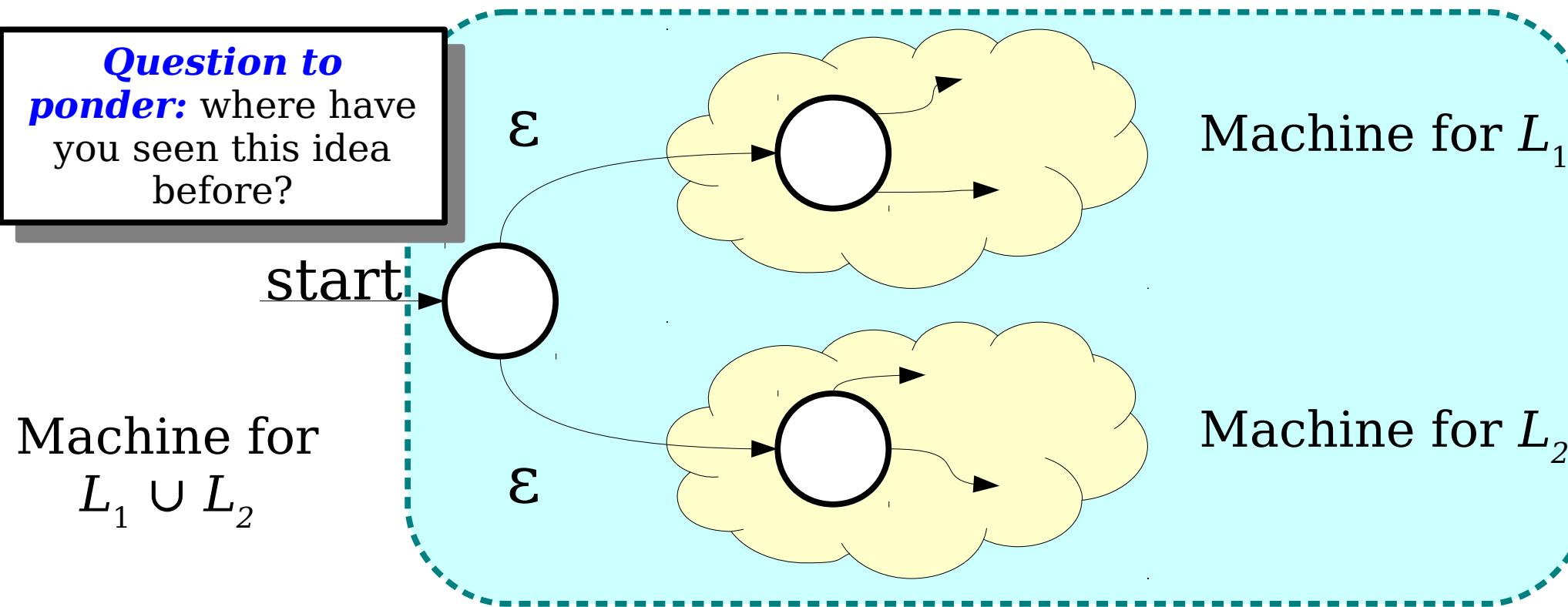
The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?



The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

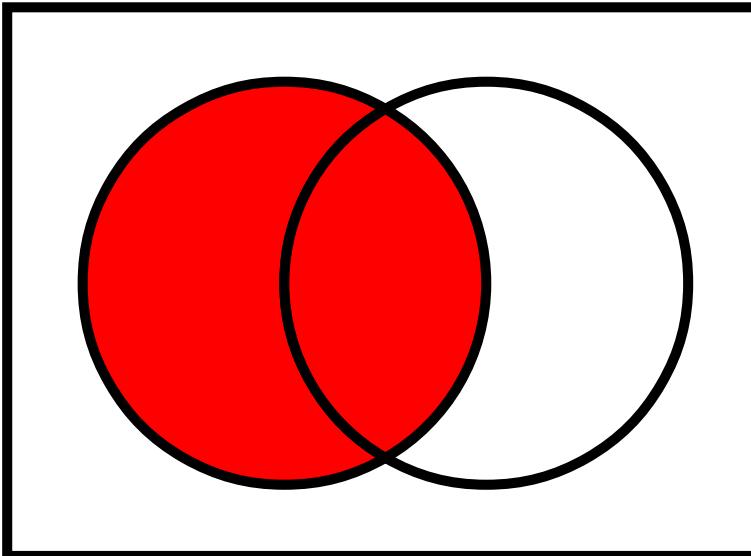


The Intersection of Two Languages

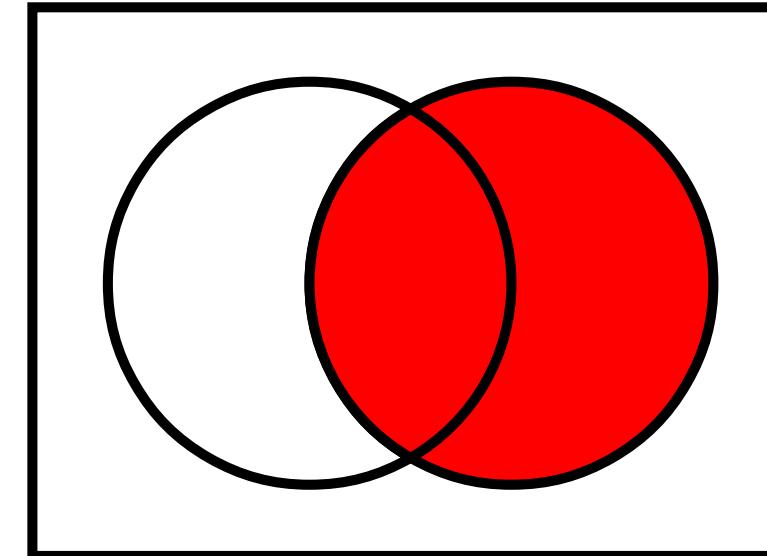
- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?



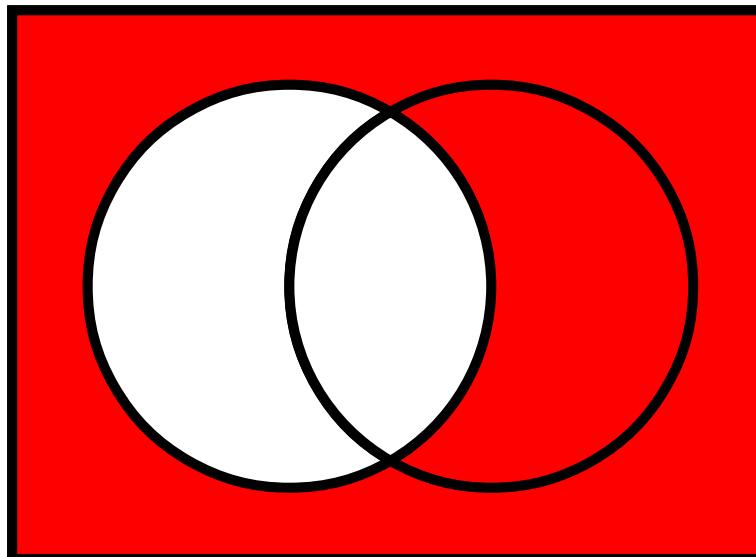
L_1



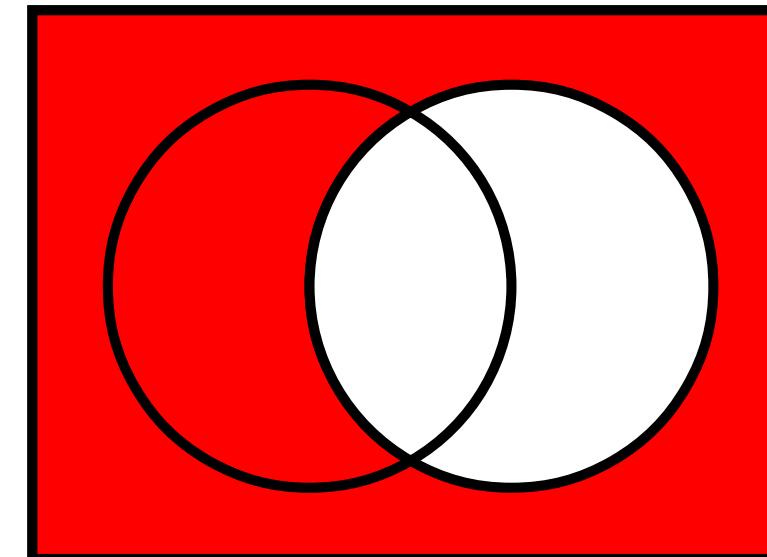
L_2

The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?



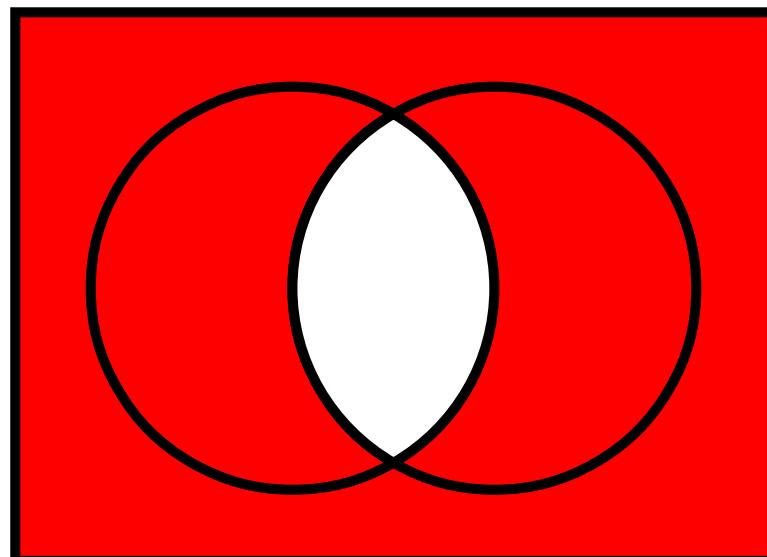
\overline{L}_1



\overline{L}_2

The Intersection of Two Languages

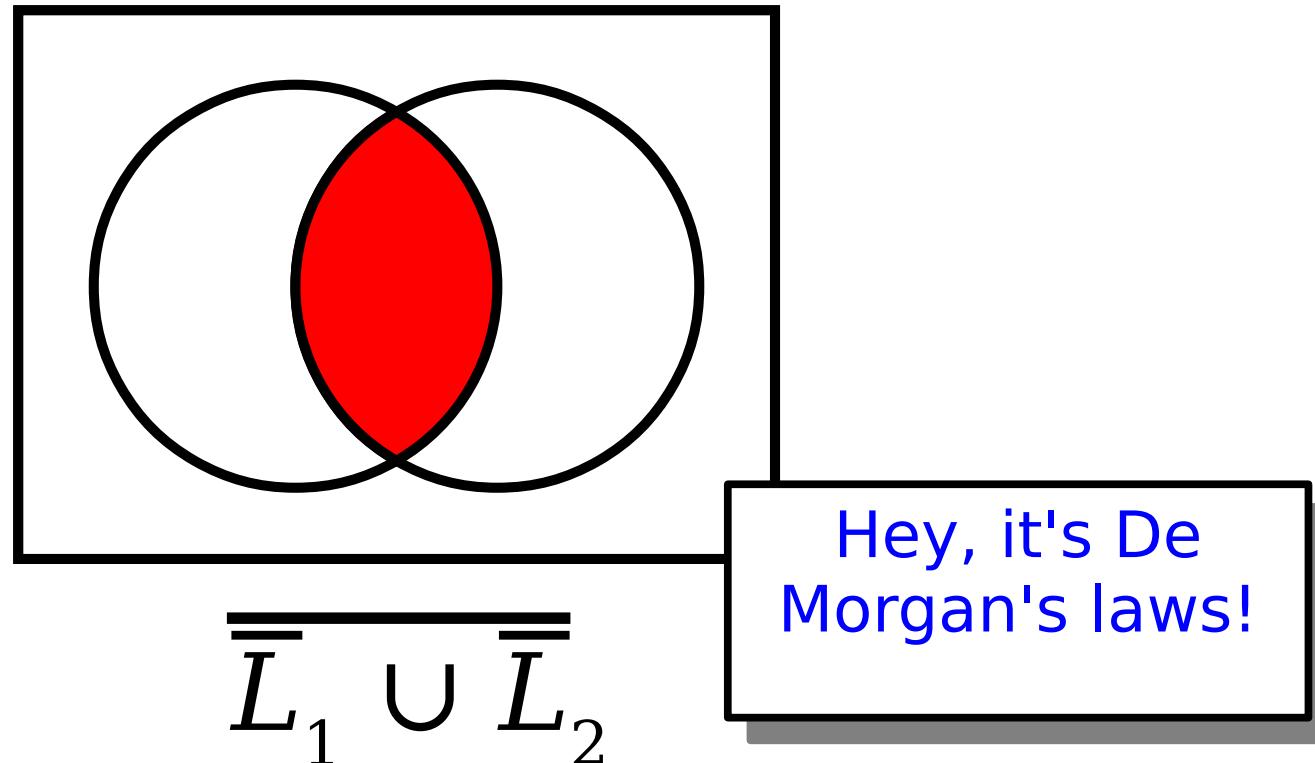
- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?



$$\overline{L}_1 \cup \overline{L}_2$$

The Intersection of Two Languages

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?



Concatenation

String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the **concatenation** of w and x , denoted wx , is the string formed by tacking all the characters of x onto the end of w .
- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.
- This is analogous to the $+$ operator for strings in many programming languages.
- Some facts about concatenation:
 - The empty string ϵ is the **identity element** for concatenation:

$$w\epsilon = \epsilon w = w$$

- Concatenation is **associative**:

$$wxy = w(xy) = (wx)y$$

Concatenation

- The ***concatenation*** of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1 L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \wedge x \in L_2 \}$$

Concatenation Example

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b}, \dots, \mathbf{z}, \mathbf{A}, \mathbf{B}, \dots, \mathbf{Z} \}$ and consider these languages over Σ :
 - ***Noun*** = { **Puppy**, **Rainbow**, **Whale**, ... }
 - ***Verb*** = { **Hugs**, **Juggles**, **Loves**, ... }
 - ***The*** = { **The** }
- The language ***TheNounVerbTheNoun*** is
 - { **ThePuppyHugsTheWhale**,
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }

Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1 L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \wedge x \in L_2 \}$$

- Two views of $L_1 L_2$:
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2 .
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2 .

This is closely related to, but different than, the Cartesian product.

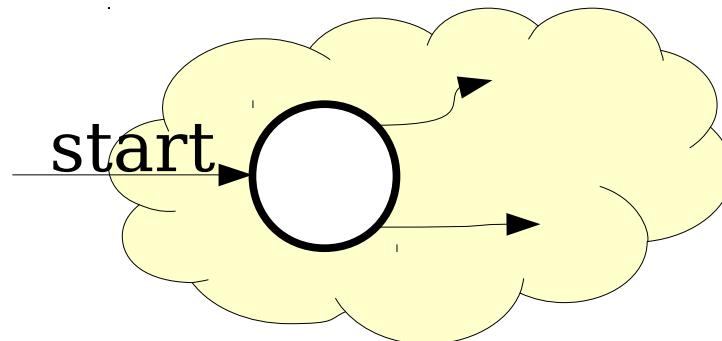
Question to ponder: In what ways are concatenations similar to Cartesian products? In what ways are they different?

Concatenating Regular Languages

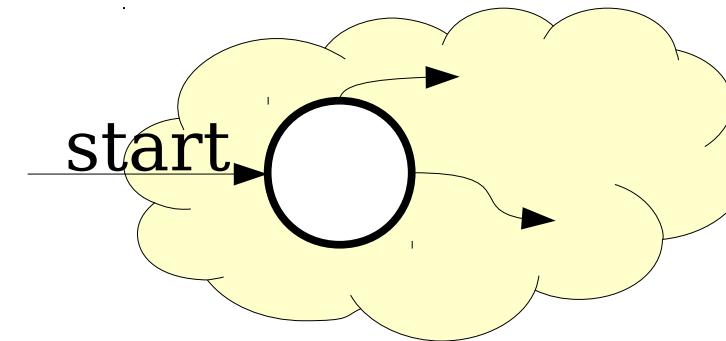
- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition - can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- **Idea.**

Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition - can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- **Idea.**



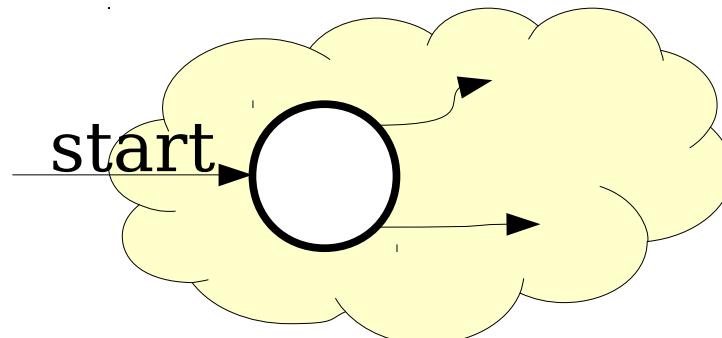
Machine for L_1



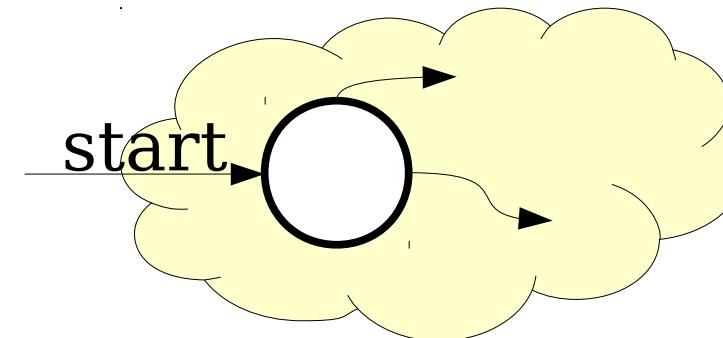
Machine for L_2

Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition - can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- **Idea.**



Machine for L_1

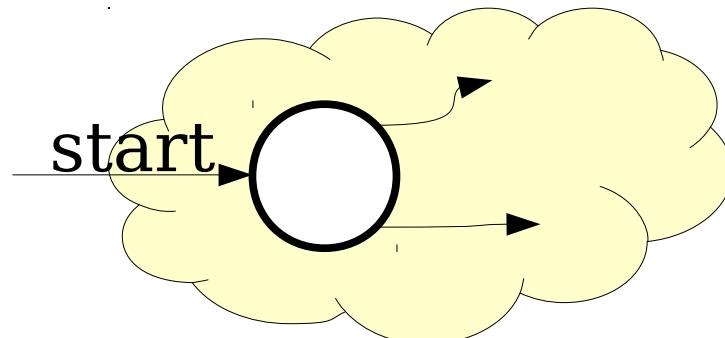


Machine for L_2

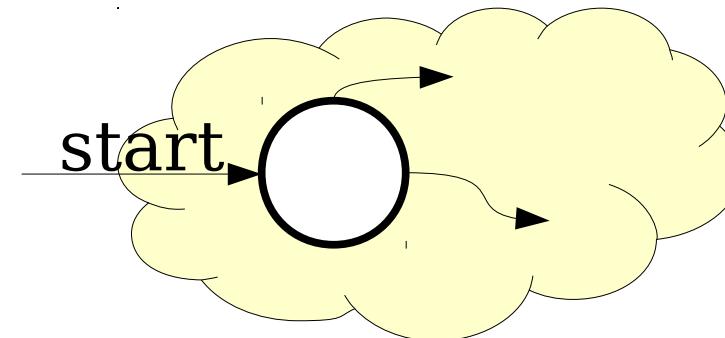
b	o	o	k	k	e	e	p	e	r
---	---	---	---	---	---	---	---	---	---

Concatenating Regular Languages

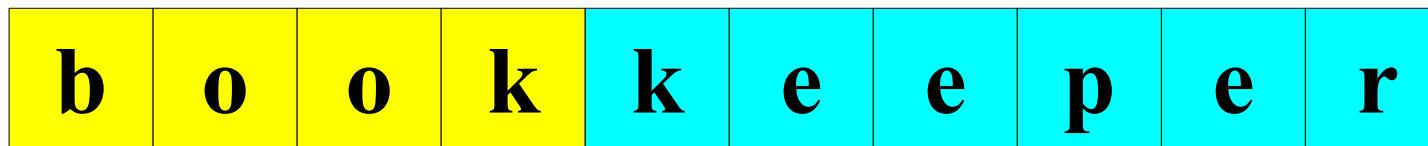
- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition - can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- **Idea.**



Machine for L_1

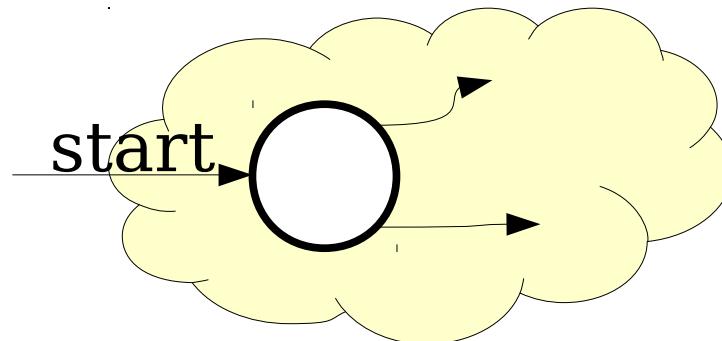


Machine for L_2

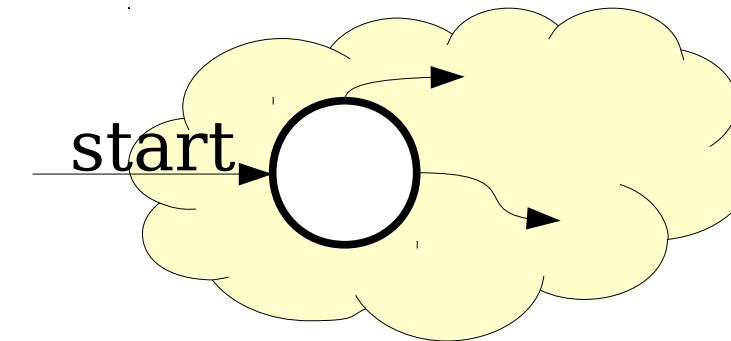


Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition - can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- **Idea.**



Machine for L_1



Machine for L_2

b	o	o	k
---	---	---	---

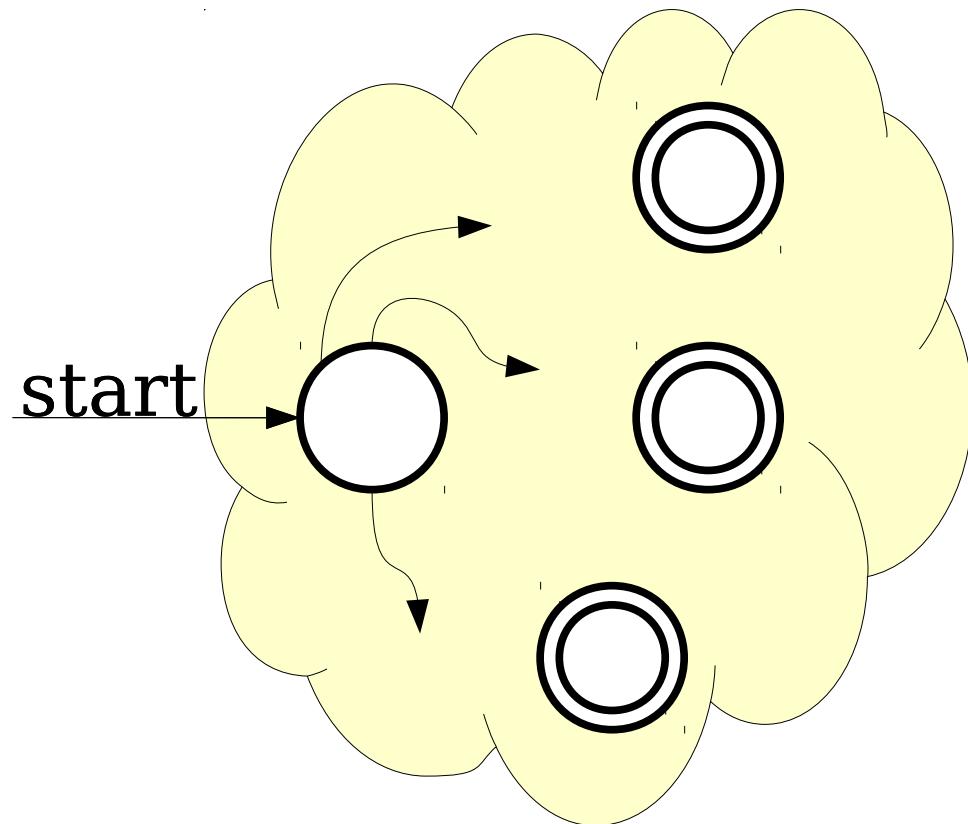
k	e	e	p	e	r
---	---	---	---	---	---

Concatenating Regular Languages

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition – can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?
- **Idea:**
 - Run a DFA/NFA for L_1 on w .
 - Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2 .
 - If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
 - If the automaton for L_2 rejects the remainder, the split was incorrect.

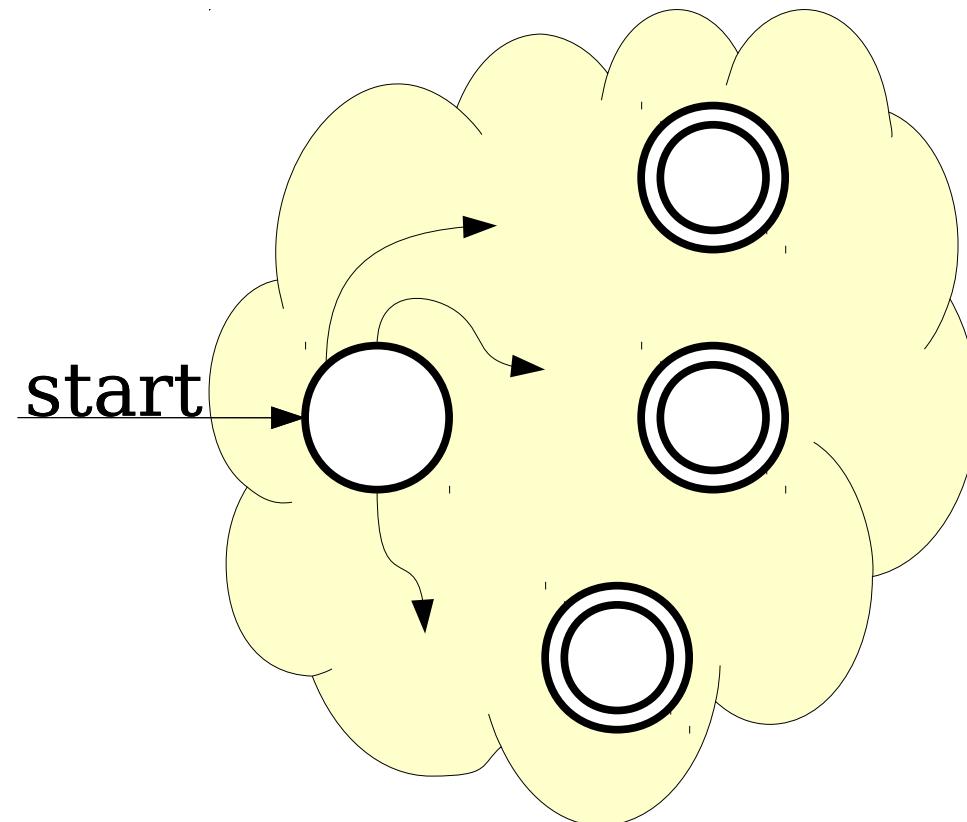
Concatenating Regular Languages

Concatenating Regular Languages

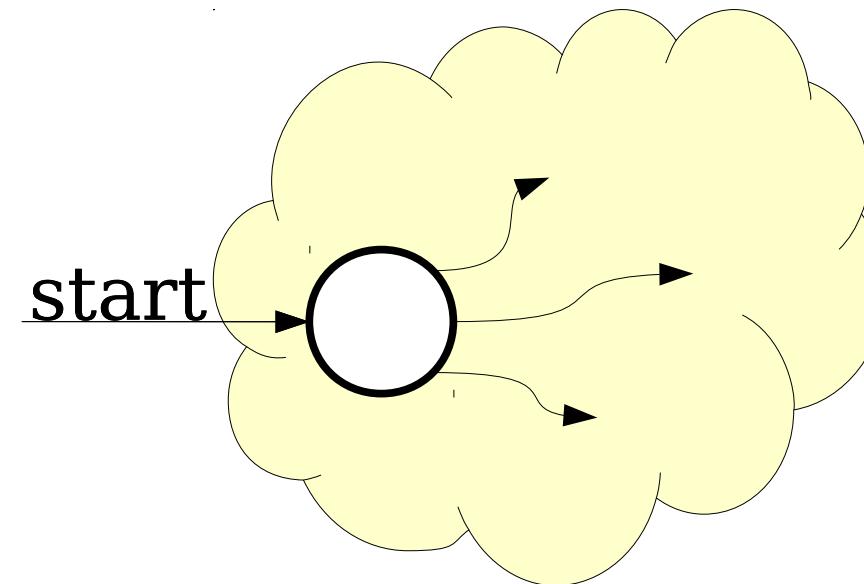


Machine for
 L_1

Concatenating Regular Languages

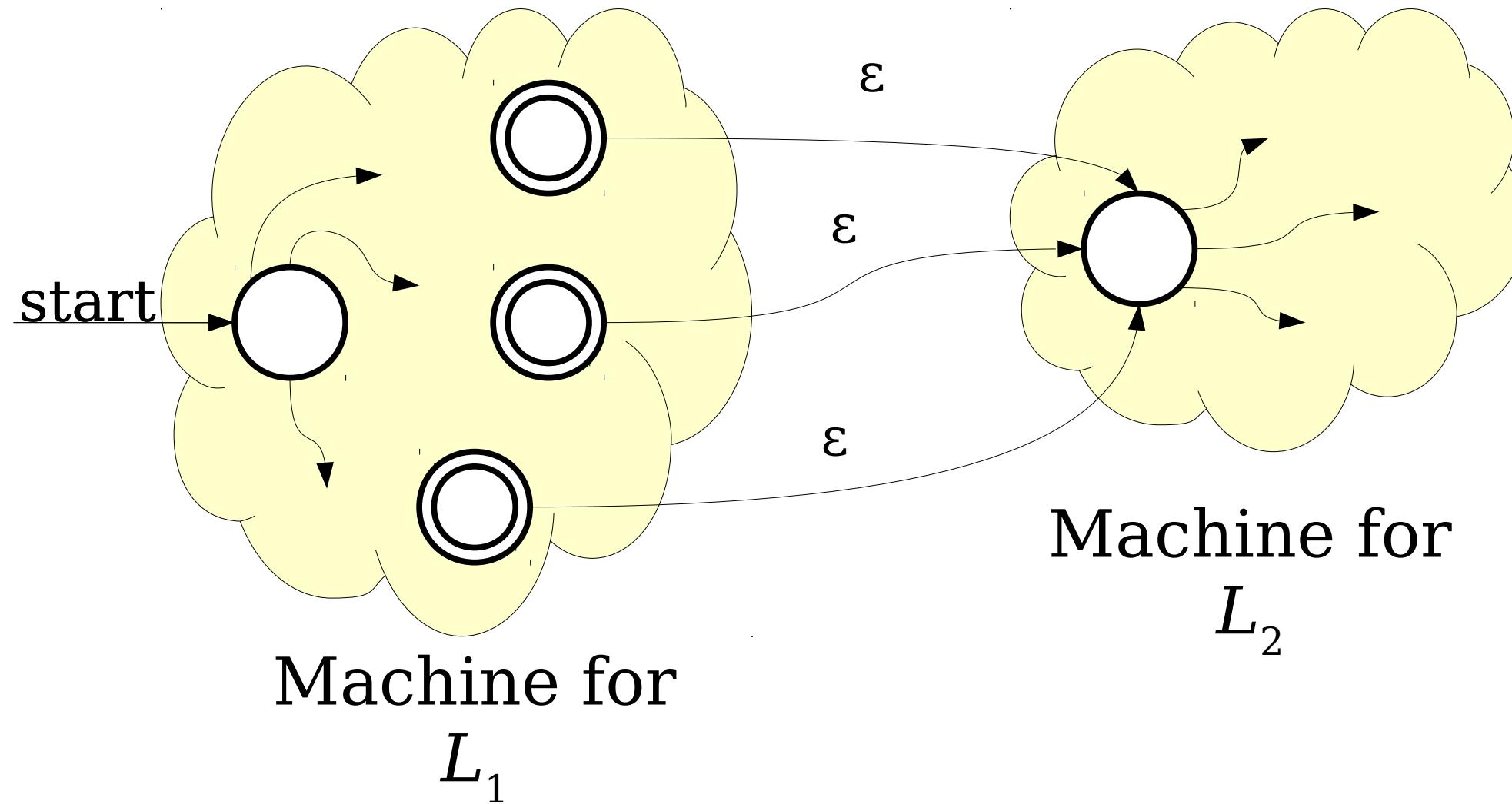


Machine for
 L_1

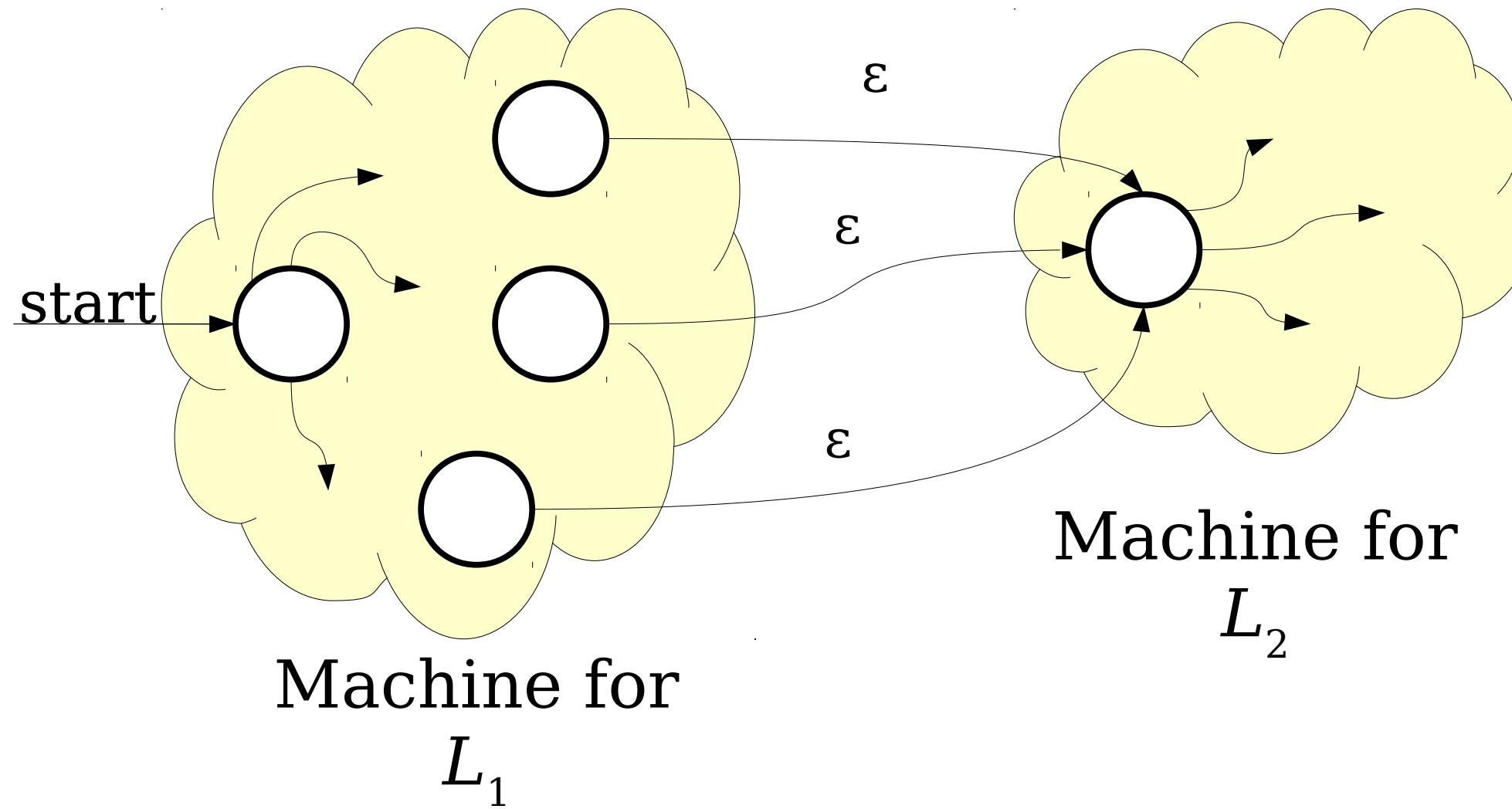


Machine for
 L_2

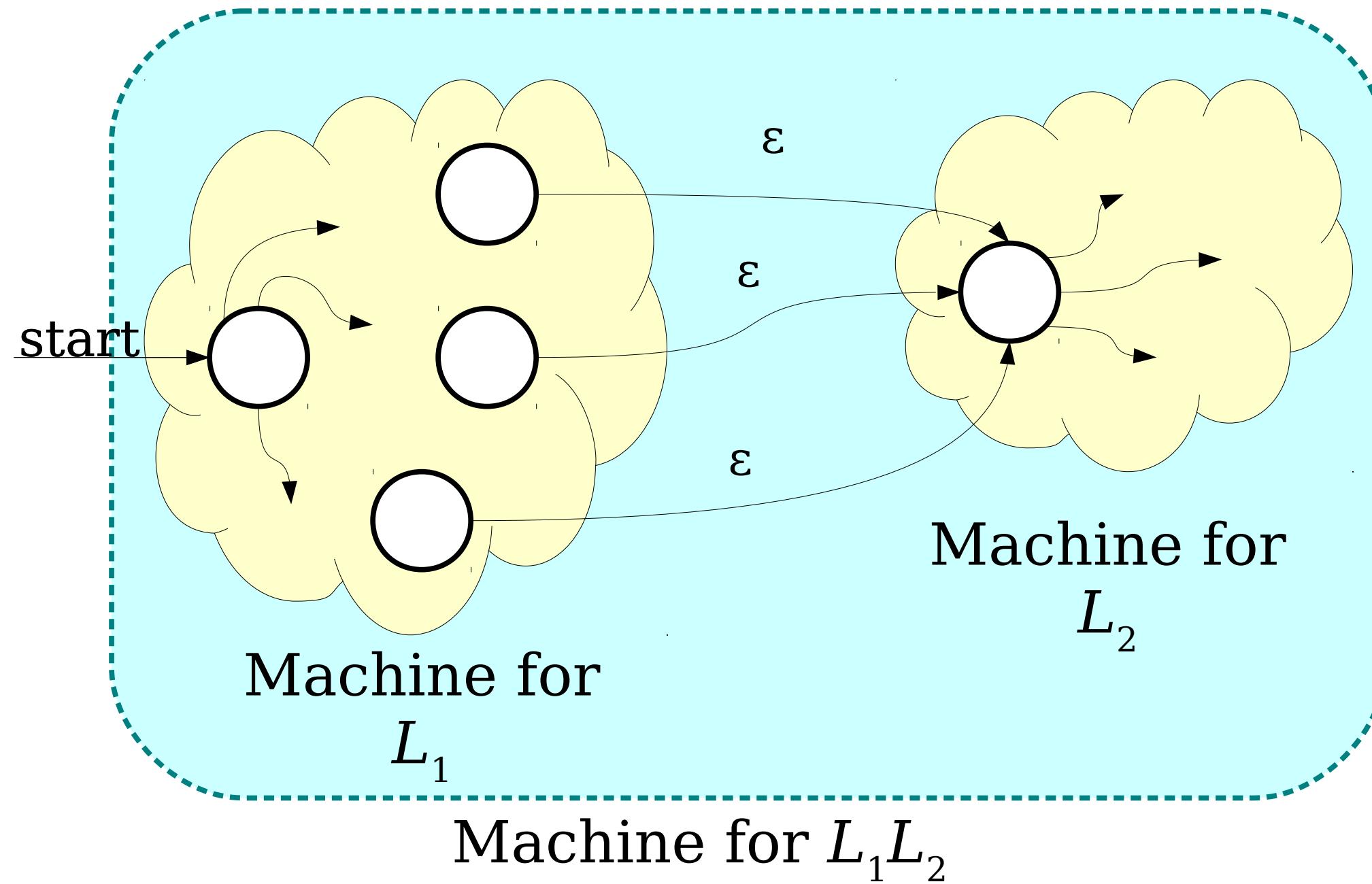
Concatenating Regular Languages



Concatenating Regular Languages



Concatenating Regular Languages



Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa}, \text{b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L .

$$\{ \text{aaaa}, \text{aab}, \text{baa}, \text{bb} \}$$

- LLL is the set of strings formed by concatenating triples of strings in L .

$$\{ \text{aaaaaa}, \text{aaaab}, \text{aabaa}, \text{aabb}, \text{baaaa}, \text{baab}, \text{bbaa}, \text{bbb} \}$$

- $LLLL$ is the set of strings formed by concatenating quadruples of strings in L .

$$\begin{aligned} & \{ \text{aaaaaaaa}, \text{aaaaaab}, \text{aaaabaa}, \text{aaaabb}, \text{aabaaaa}, \\ & \text{aabaab}, \text{aabbba}, \text{aabbb}, \text{baaaaa}, \text{baaaab}, \text{baabaa}, \\ & \text{baabb}, \text{bbaaaa}, \text{bbaab}, \text{bbbaa}, \text{bbbb} \} \end{aligned}$$

Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
- $L^0 = \{\varepsilon\}$
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that $\{\varepsilon\} \neq \emptyset$. Can you explain why?
- $L^{n+1} = LL^n$
 - Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.
- **Question to ponder:** Why define $L^0 = \{\varepsilon\}$?
- **Question to ponder:** What is \emptyset^0 ?

The Kleene Star

The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as

$$L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \}$$

- Mathematically:

$$w \in L^* \leftrightarrow \exists n \in \mathbb{N}. w \in L^n$$

- Intuitively, L^* is the language all possible ways of concatenating zero or more strings in L together, possibly with repetition.
- **Question to ponder:** What is \emptyset^* ?

The Kleene Closure

If $L = \{ \mathbf{a}, \mathbf{bb} \}$, then $L^* = \{$

$\varepsilon,$

$\mathbf{a}, \mathbf{bb},$

$\mathbf{aa}, \mathbf{abb}, \mathbf{bba}, \mathbf{bbb},$

$\mathbf{aaa}, \mathbf{aabb}, \mathbf{abba}, \mathbf{abbbb}, \mathbf{bbaa}, \mathbf{bbabb}, \mathbf{bbbba}, \mathbf{bbbbbb},$

\dots

}

Think of L^* as the set of strings you can make if you have a collection of stamps – one for each string in L – and you form every possible string that can be made from those stamps.

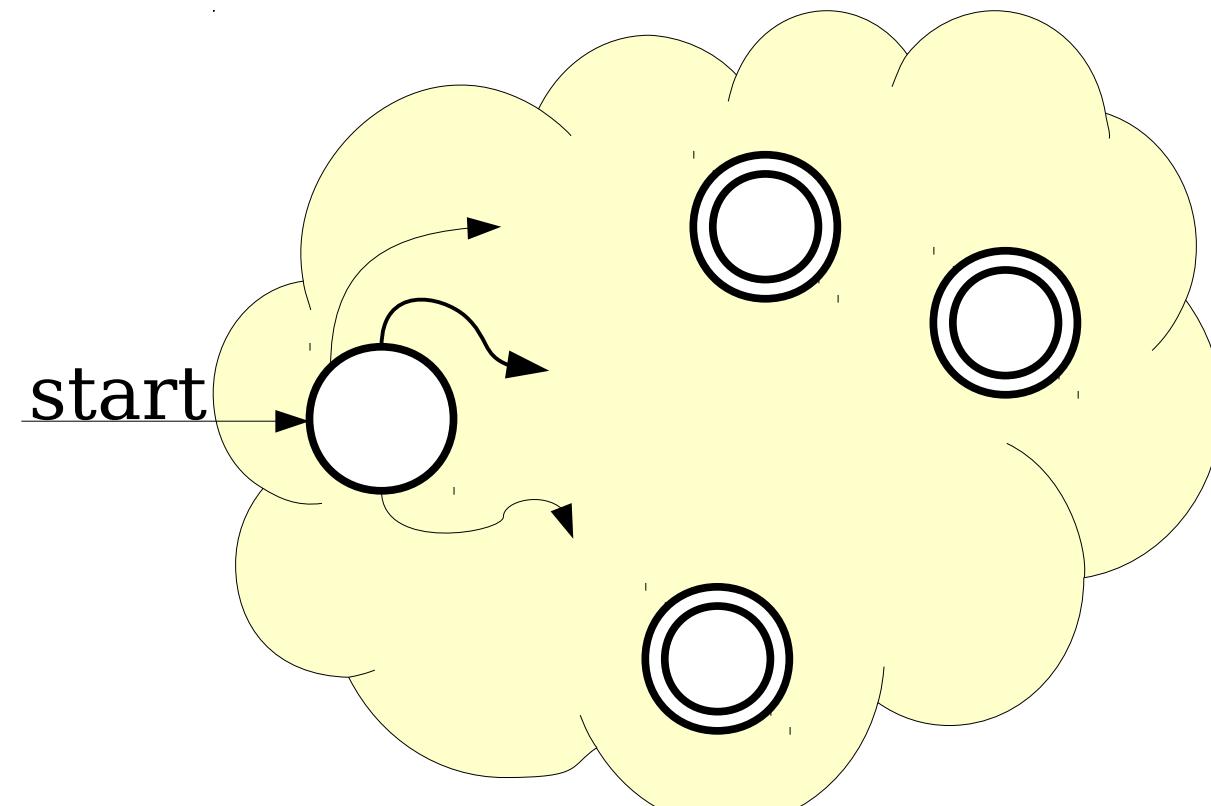
Reasoning about Infinity

- If L is regular, is L^* necessarily regular?
- **⚠ A Bad Line of Reasoning: ⚠**
 - $L^0 = \{ \epsilon \}$ is regular.
 - $L^1 = L$ is regular.
 - $L^2 = LL$ is regular
 - $L^3 = L(LL)$ is regular
 - ...
 - Regular languages are closed under union.
 - So the union of all these languages is regular.

We won't get into the reasons why, but infinity just doesn't work this way where it neatly extends from the combination of a bunch of finite things.

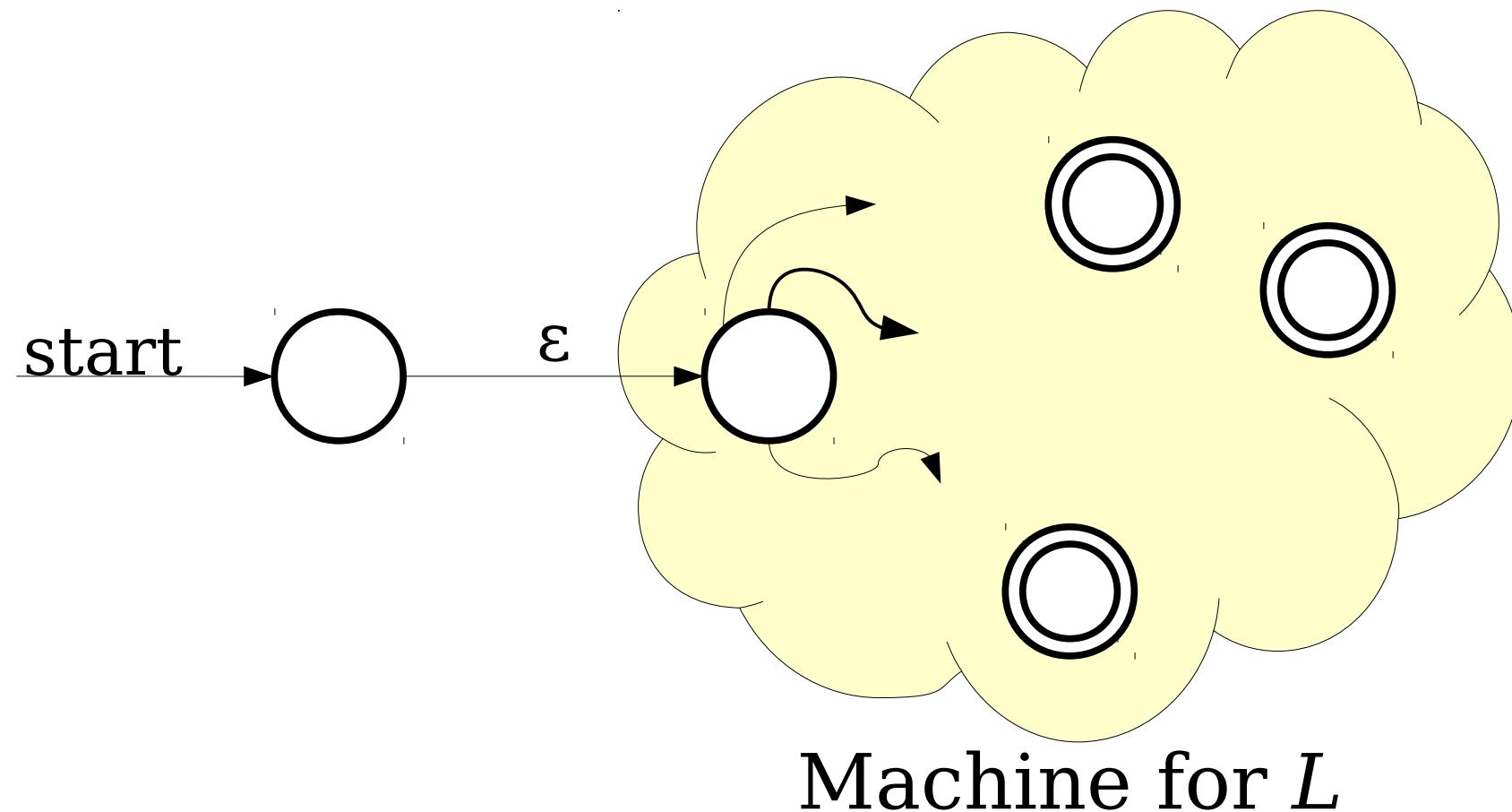
Idea: Can we directly convert an NFA for language L to an NFA for language L^* ?

The Kleene Star

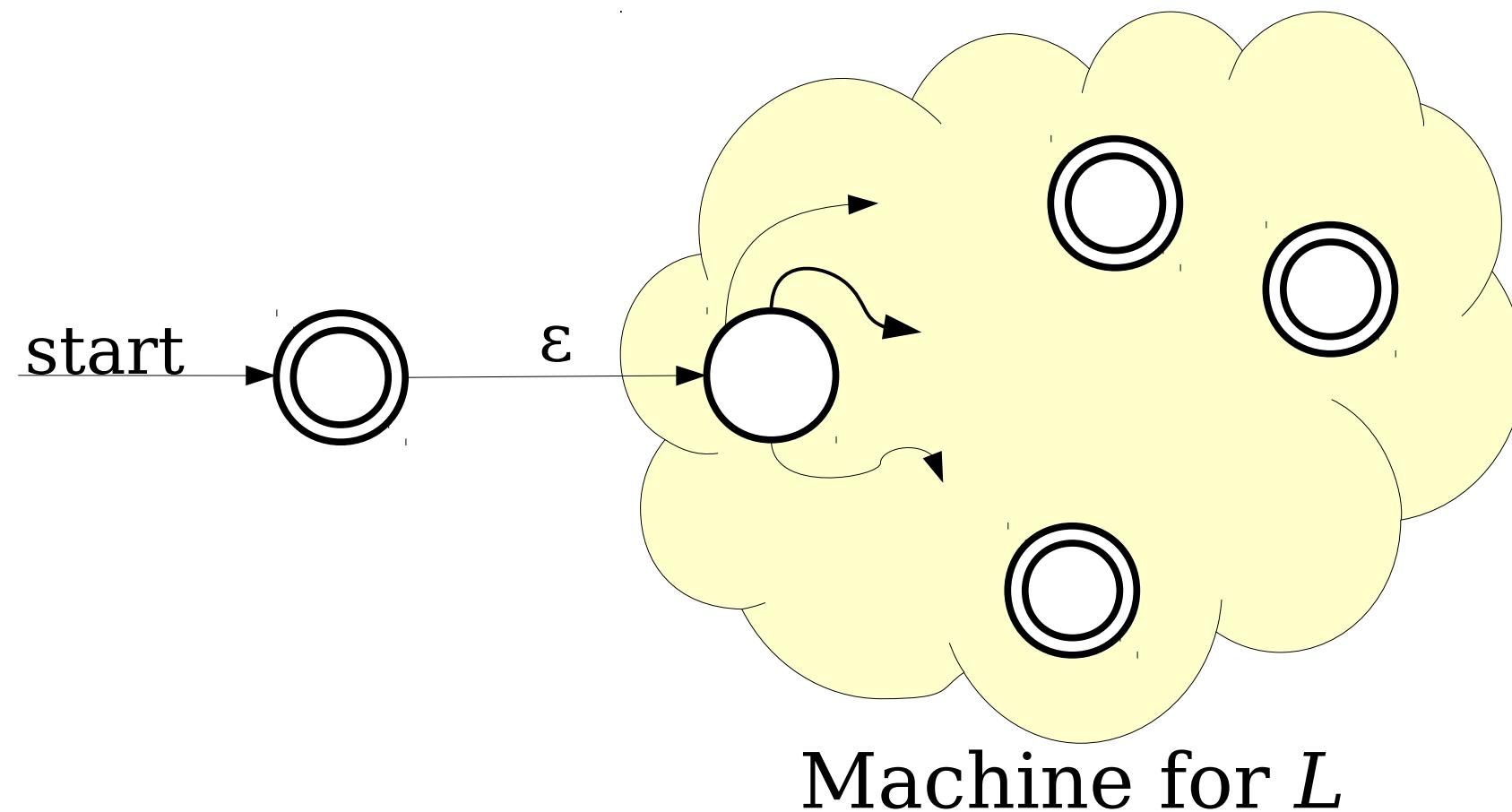


Machine for L

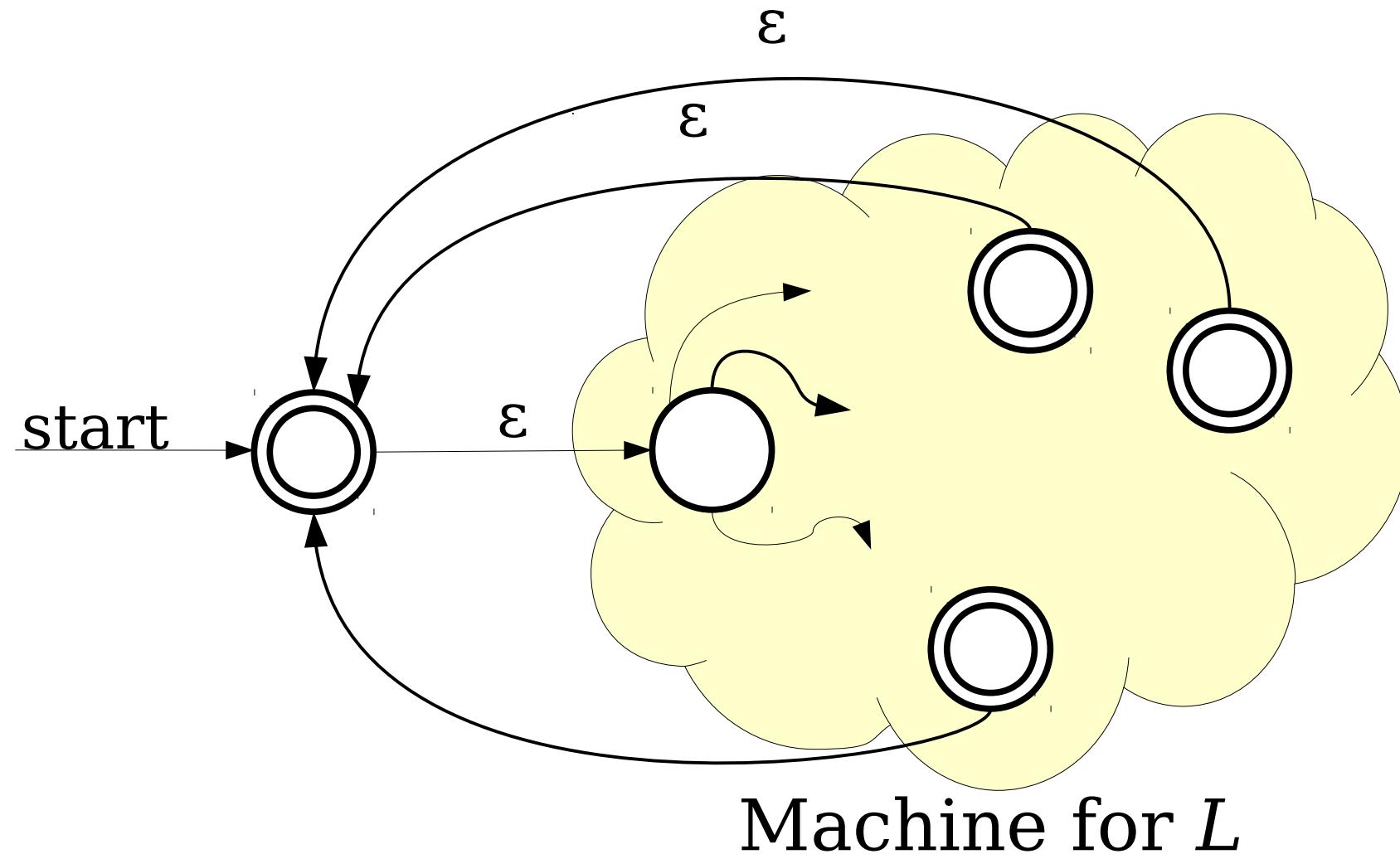
The Kleene Star



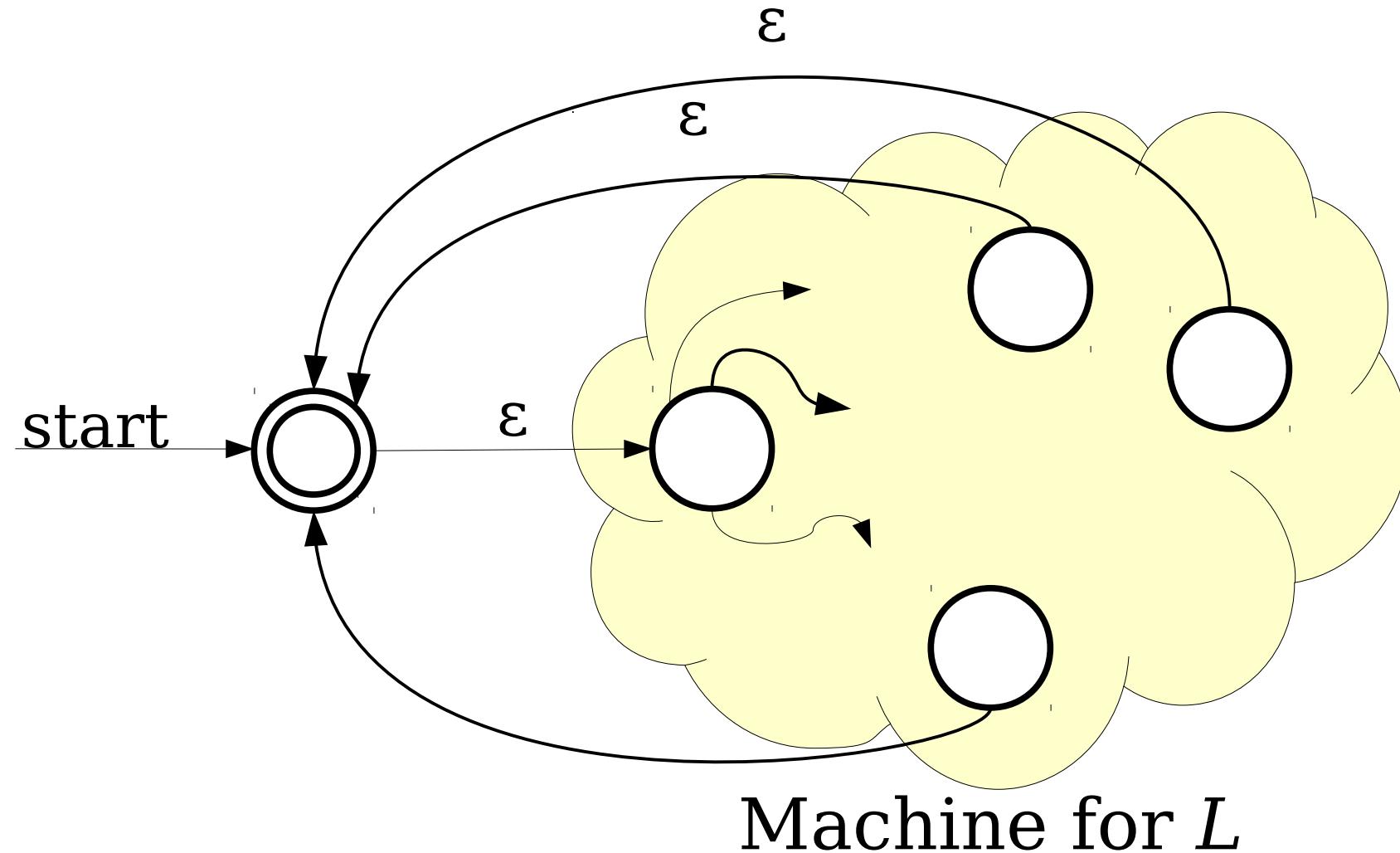
The Kleene Star



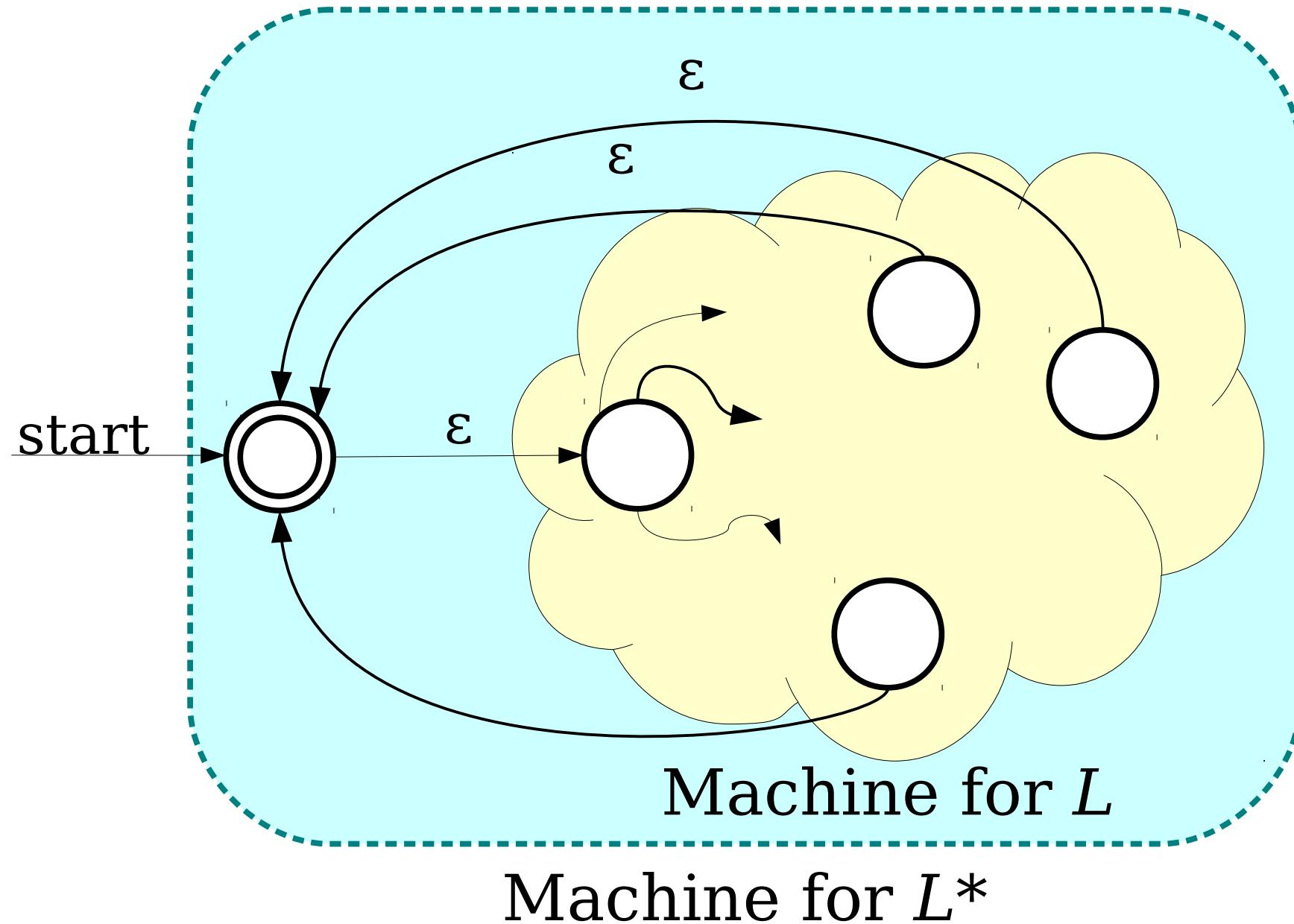
The Kleene Star



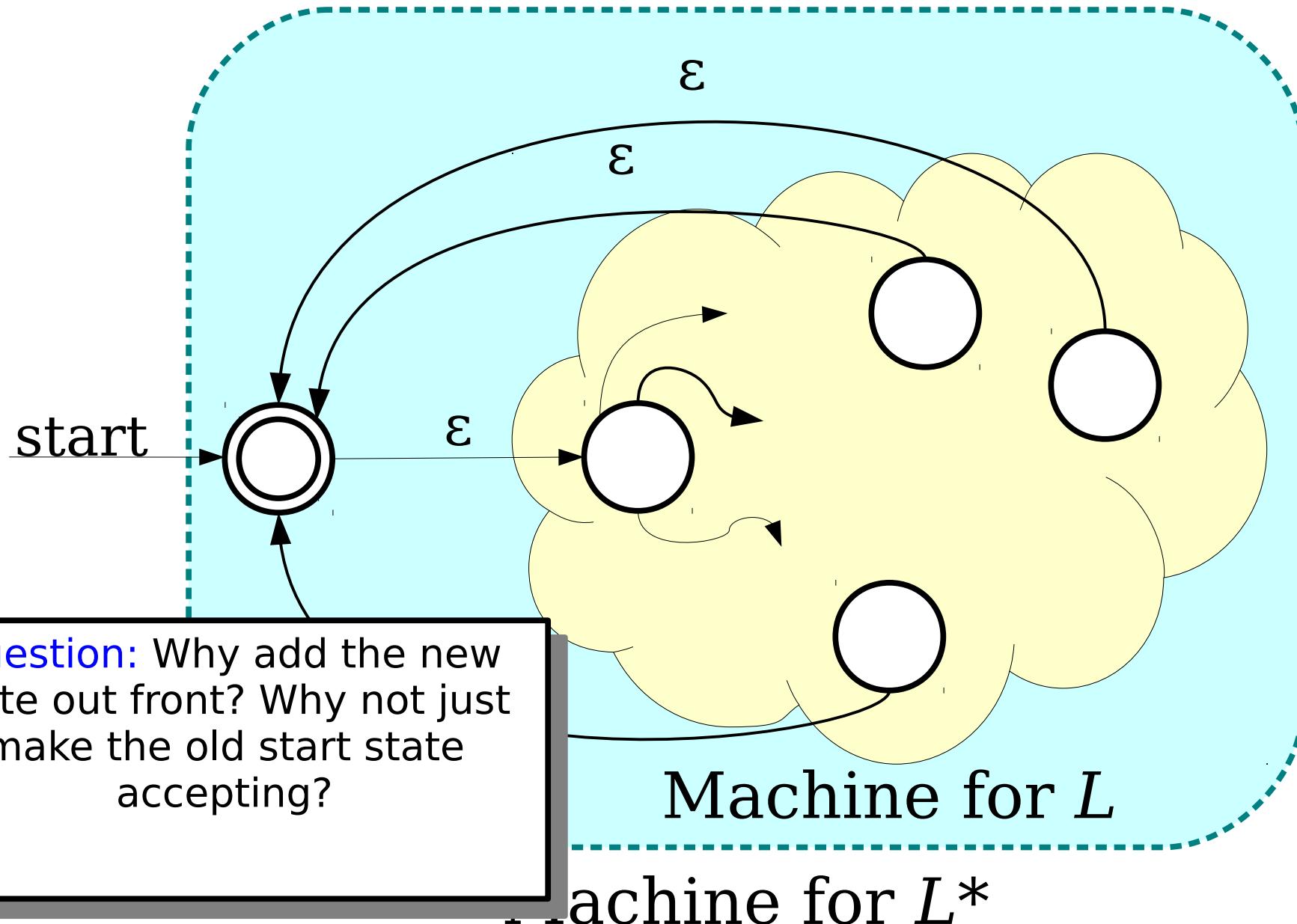
The Kleene Star



The Kleene Star



The Kleene Star



Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - \overline{L}_1
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*
- These properties are called ***closure properties of the regular languages.***

Next Time

- ***Regular Expressions***
 - Building languages from the ground up!
- ***Thompson's Algorithm***
 - A UNIX Programmer in Theoryland.
- ***Kleene's Theorem***
 - From machines to programs!