Finite Automata

Part Three



From Last Time



NFAs and DFAs

* DFAs (Deterministic Finite Automata)

* are machines for accepting/rejecting strings.

 The language of a DFA is the set of strings it
accepts.

* The set of languages for which there exists a
DFA is called the Regular Languages.

e NFAs (Nondeterministic Finite Automata)

« are DFAs but with some bonus superpowers of

having more options for how we move from
state to state.



New Stuff!



Table Representation of DFAs



Tabular DFAs




Tabular DFAs

Since this is the first ql
row, it's the start
state.
qd,




Tabular DFAs

Question:
What goes in the q;, qO ql qO

row of the table?




Tabular DFAs




Tabular DFAs

1
(A) O 1 2
Question: qO ql q() -
How should we
complete the table? -
Go to ql q3 q2
pollev.com/cs103spr25
q2 q3 q() -
CI3 - - q3




Tabular DFAs




Tabular DFAs

1 ©
start © W
1
© 1
/»*qo ql qO
These stars indicate ql Cl3 q2

accepting states.




Tabular DFAs




NFAs and DFAs

« We know that any language for which
there exists a DFA can also be recognized
by an NFA.

« Why?

 Every DFA is essentially already an NFA!

- (No requirement that a given NFA use every NFA
superpower available)



NFAs and DFAs

« We know that any language for which
there exists a DFA can also be recognized
by an NFA.

« Why?

 Every DFA is essentially already an NFA!

- (No requirement that a given NFA use every NFA
superpower available)

* Question: Can any language recognized
by an NFA also be recognized by a DFA?



NFAs and DFAs

« We know that any language for which
there exists a DFA can also be recognized
by an NFA.

« Why?

 Every DFA is essentially already an NFA!

- (No requirement that a given NFA use every NFA
superpower available)

* Question: Can any language recognized
by an NFA also be recognized by a DFA?

* Surprisingly, the answer is yes!



NFAs and DFAs

* Question: Can any language recognized by an NFA
also be recognized by a DFA?

* Surprisingly, the answer is yes!

 Theorem: For all languages L, if L is recognized by an
NFA, then there exists a DFA that also recognizes L.

« To prove this, we need to:

- Pick an arbitrary language L, assuming an NFA exists for L

- Want to show there exists a DFA for L (describe how we would
construct a DFA with the same language, in a generalizable way)

- For the next few slides, we’ll ponder how to approach that...



Thought Experiment:
How would you simulate an NFA in
software?





































































Key insight:

NFA works like a DFA, but “which state am I in right now?”
and “which states will I be in next given where I am right
now and which character I'm reading?” are questions
answered by a set of states, not a single state.

21222 ]al|?2|2]?]2

1)




D F.A.S Remember: For DFAs,

we said we could
formally define the

. : . transitions (arrows) as
A DFA consists of: a functionf: Sx 2 - S.
e A set of states (in other words, an
order pair of current
« Exactly one element of the set of states designated as state and input
start state character (g, ¢) maps to

a destination state q'.

- (as a consequence, the set of states must be nonempty)

* A subset of the states designated as accepting states e e e
+ An alphabet Inf: Sx 2 - S, the x
(cross product) means

« A transition function that maps (state, character) ordered "Taﬁhordeged paitrs
; out of these two sets.”
pairs to states S0 if S={a b} and T

- (i.e., for each state in the DFA, there must be exactly one ={1,2},SxT=..7?

transition defined for each symbol in X) Go to

PollEv.com/cs103spr25




DFAs

« A DFA consists of:

A set of states

Exactly one element of the set of states designated as
start state

- (as a consequence, the set of states must be nonempty)
A subset of the states designated as accepting states

An alphabet X

A transition function that maps (state, character) ordered

pairs to states

- (i.e., for each state in the DFA, there must be exactly one
transition defined for each symbol in %)

Remember: For DFAs,
we said we could
formally define the
transitions (arrows) as
a functionf: Sx z - S.
(in other words, an
order pair of current
state and input
character (g, ¢) maps to
a destination state q'.

(b,2)}

Math notation note:
INnf: Sx 2 - S, the x
(cross product) means
“make ordered pairs
out of these two sets.”
SoifS={a,b}and T
= {1, 2}, SXT=
{(a,1), (a,2), (b,1),



Remember: For DFAS,
we said we could
formally define the
transitions (arrows) as
a functionf: Sx 2 - S.
(in other words, an
order pair of current

Key inSight: state and input

NFA works like a DFA, but “which state am I in right now?” Cgadr:g;enrafc?(’)rf )Sgileo zt 0
and “which states will I be in next given where I am right '
now and which character I'm reading?” are questions
answered by a set of states, not a single state.

Question:
How would we formally
define the transitions
P P J J a J 9 9 9 for an NFA as a

function, given this

insight?
Go to
pollev.com/cs103spr25
















2
b

__— a

{qo} {qo, q1} {qo}




>
b

__— a

{qo} {qo, q1} {qo}




>
b

__— a

{qo} {qo, q1} {qo}




>
b

__— a

{qo} {qo, q1} {qo}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}













>
b

__— a

{qo} {qo, q1} {qo}

{qo, q1}




>
b

__— a

{qo} {qo, q1} {qo}

{qo, q1} {qo, g1}




{qo}

{qo, q1}

{qo}

{qo, q1}

{qo, q1}




{qo}

{qo, q1}

{qo}

{qo, q1}

{qo, q1}













>
b

__— a

{qo} {qo, q1} {qo}

{qo, q1} {qo, q1} {qo, q2}




>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2}







Quick check:
What are the contents
of the next row?

Answer like
“a={.},b={.}
all in one response.

Go to

PollEv.com/cs103spr25



















>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3}













2
start @
Wa ()
(o,
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3}




>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3}




>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}




>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}

{qo, q2} {qo, q1, q3} {qo}




>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3}




{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}

{qo, q1, q3}
















>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}




>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1}




{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, g3} {qo, q1}




{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}

{qo, q1, q3} {qo, q1}
















>
b

/ da
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, g3} {qo}
{qo, q1, g3} {qo, q1} {qo, q2}




>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}
{qo, q1, q3} {qo, q1} {qo, q2}
b 2
4 4
0, q1}

ﬂ{ {qo} } 2 >[{q
\

[ {qo, g2}

N—
g 9
—

{qo, q1, q:a}]




>
b

/ a
{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}
{qo, q1, q3} {qo, q1} {qo, q2}
b 2
4 4
0, q1}

ﬂ{ {qo} } 2 >[{q
\

[ {qo, g2}

N—
g 9
—

{qo, q1, q:s}]




>
b

/ a

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}

*{qo, q1, q3} {qo, q1} {qo, q2}

b 2

4 4
0, q1}

ﬂ{ {qo} } 2 >[{q
\

[ {qo, g2}

N—
g 9
—

{qo, q1, q:s}]




>
b

/ a

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}

*{qo, q1, q3} {qo, q1} {qo, q2}

b 2

4 4
0, q1}

ﬂ{ {qo} } 2 >[{q
\

[ {qo, g2}

3\

>[[{ qo, q, q:sﬂ]

N—
g 9




>
b

/ a

{qo} {qo, q1} {qo}
{qo, q1} {qo, q1} {qo, q2}
{qo, q2} {qo, q1, q3} {qo}

*{qo, q1, q3} {qo, q1} {qo, q2}

b 2

4 4
0, q1}

ﬂ{ {qo} } 2 >[{q
\

[ {qo, g2}

3\

>[[{ qo, q, q:aﬂ]

N—
g 9










L1 L1

a
start (g0} } a >[ {qo, a1}
\ i o a

[ {qo, CIZ}L : >{[{qo,ql,qsﬂ]




L1

e

[ {qo, CIZ}L : >{[{qo,ql,qsﬂ]




2
(=
a b a a b a
b

L1 L1

a
start (g0} } a >[ {qo, a1}
\ i o a

[ {qo, Clz}L : >[[{qo,ql,qsﬂ]




b
L1 A

a
start (g0} } a >[ {qo, a1}
\ i o a

(W ). v (e




b
L1 A

a
start (g0} } a { T, 6]
\ i o a

[ {qo, CIZ}L : >{[{qo,ql,qsﬂ]




b

a
A —_—

a
start (g0} } a >[ {qo, a1}
\ i o a

[ {qo, Clz}L : >[[{qo,ql,qsﬂ]







The Subset Construction

* This procedure for turning an NFA for a language L into a
DFA for a language L is called the subset construction.

« It’s sometimes called the powerset construction; it’s different
names for the same thing!
 Intuitively:
« Each state in the DFA corresponds to a set of states from the NFA.

 Each transition in the DFA corresponds to what transitions would
be taken in the NFA when using the massive parallel intuition.

 The accepting states in the DFA correspond to which sets of states
would be considered accepting in the NFA when using the massive
parallel intuition.

e There’s an online Guide to the Subset Construction with
a more elaborate example involving e-transitions and cases
where the NFA dies; check that for more details.



The Subset Construction

* In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

* Useful fact: |((S)| = 21sl for any finite set S.

* So, in the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

* Question to ponder: Can you find a
tamily of languages that have NFAs of size
n, but no DFAs of size less than 2n?



Why This Matters

« We now have two perspectives on regular
languages:

 Regular languages are languages accepted
by DFAs.

 Regular languages are languages accepted
by NFAs.

 We can now reason about the regular
languages in two different ways.



Properties of Regular Languages



The Union of Two Languages

« If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?



The Union of Two Languages

« If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?

S t,C)JJV> Machine for L,
S rt_@l» Machine for L,




The Union of Two Languages

« If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?

S t,C)JJV> Machine for L,
S rt_@l» Machine for L,

start ,O




The Union of Two Languages

« If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?

& Machine for L,

start

Machine for L,



The Union of Two Languages

« If L, and L, are languages over the alphabet X, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L; U L,?

s WEN EN EN 5N BN BN NN SN SN BN SN SN SN SN SN SN SN SN SN SN SN SN SN BN SN SN SN SN BN SN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B BN B O O
4 ~

Question to
ponder: where have
you seen this idea
before?

Machine for L,

start:

Machine for Machine for L,

L UL,

~~~~~~
----------------------------------------------------



The Intersection of Two Languages

- If L, and L, are languages over %, then L, N L, is
the language of strings in both L, and L,.

« Question: If L, and L, are regular, is L, N L,
regular as well?



The Intersection of Two Languages

- If L, and L, are languages over %, then L, N L, is
the language of strings in both L, and L,.

« Question: If L. and L, are regular, is L, N L,
regular as well?




The Intersection of Two Languages

- If L. and L, are languages over X, then L, N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?




The Intersection of Two Languages

- If L. and L, are languages over X, then L, N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?




The Intersection of Two Languages

- If L. and L, are languages over X, then L, N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

Hey, it's De
Morgan's laws!




Concatenation



String Concatenation

e [fw € 2* and x € X*, the concatenation of w and x,
denoted wkx, is the string formed by tacking all the
characters of x onto the end of w.

 Example: if w = quo and x = kka, the concatenation
wx = quokka.

« This is analogous to the + operator for strings in many
programming languages.
* Some facts about concatenation:
« The empty string ¢ is the identity element for concatenation:
WE =€Ew=W
 Concatenation is associative:
wxy = wxy) = (wx)y



Concatenation

 The concatenation of two languages L
and Lz over the alphabet X is the language

Lil={wx€X*¥|w€Li1AXx€ELz2}



Concatenation Example

e JletX={a,b, ..,z A B, .. Z} and consider
these languages over 2:

 Noun = { Puppy, Rainbow, Whale, ... }
* Verb = { Hugs, Juggles, Loves, ... }
* The = { The }
 The language TheNounVerbTheNoun is

* { ThePuppyHugsTheWhale,
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }



Concatenation

 The concatenation of two languages L1 and Lz
over the alphabet X is the language

Lilz ={wx €X*|we€LiAx€Lz2}
» Two views of LiLz:

« The set of all strings that can be made by concatenating
a string in Li with a string in Lo.

* The set of strings that can be split into two pieces: a
piece from Li1 and a piece from L.

This is closely related to, but different
than, the Cartesian product.

Question to ponder: In what ways are
concatenations similar to Cartesian
products? In what ways are they
different?




Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings xy
such that x € L, and y € L,?

° It’Dﬂo



Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings xy
such that x € L, and y € L,?

° It’Dﬂo

S 1"t,C:)JJ'> S rt,@l»

Machine for L, Machine for L,




Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings xy
such that x € L, and y € L,?

° It’Dﬂo

S 1"t,C:)JJ'> S rt,@l»

Machine for L, Machine for L,

b o o k k e e p e r




Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings xy
such that x € L, and y € L,?

° It’Dﬂo

S 1"t,C:)JJ'> S rt,@l»

Machine for L, Machine for L,

b o o k k e e p e r




Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings xy
such that x € L, and y € L,?

° It’Dﬂo

S 1"t,C:)JJ'> S rt,@l»

Machine for L, Machine for L,

b o o Kk k e e p e r




Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings xy
such that x € L, and y € L,?

» Idea:
« Run a DFA/NFA for L, on w.

« Whenever it reaches an accepting state, optionally hand the
rest of w to a DFA/NFA for L,.

« If the automaton for L, accepts the rest, w € LilLo.

« If the automaton for L, rejects the remainder, the split was
incorrect.



Concatenating Regular Languages



Concatenating Regular Languages

O

start @
O

Machine for
L

1



Concatenating Regular Languages

start _(%‘
start @

@ Machine for

L

Machine for ’

L

1



Concatenating Regular Languages

start z

Machme for
L

Machine for ’

L

1



Concatenating Regular Languages

o

‘ Machine for
L

Machine for ’

L

1



Concatenating Regular Languages

‘—— -------------------------------------------------------------
~~~~

| o ‘:
CRONG

‘ Machine for
L2
Machine for
Ll

< P
L e
...............................................................

Machine for L. L,



[.ots and Lots of Concatenation

* Consider the language L = { aa, b }

« L is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL is the set of strings formed by concatenating triples of
strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

 LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

« We can define what it means to “exponentiate” a language
as follows:

e [ O = {g}

 Intuition: The only string you can form by gluing no strings
together is the empty string.

* Notice that {e} # 0. Can you explain why?
o [n+1l = [ [n

* Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question to ponder: Why define Lo = {&g}?
* Question to ponder: What is 0?



The Kleene Star



The Kleene Closure

 An important operation on languages is the
Kleene Closure, which is defined as

L*={we2X2* | dn € N.we€ Ln}
« Mathematically:
wE L* o dn € N. w € Ln

 Intuitively, L* is the language all possible ways
of concatenating zero or more strings in L
together, possibly with repetition.

* Question to ponder: What is J*?



The Kleene Closure

IfL ={a, bb}, then L* = {
€,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

} Think of L* as the set of strings you can
make if you have a collection of stamps -
one for each string in L - and you form
every possible string that can be made
from those stamps.




Reasoning about Infinity

» If L is regular, is L* necessarily regular?
« A A Bad Line of Reasoning: A\

e [ ={ ¢ } is regular.

1 . We won’t get into the reasons why, but
e ' =1L1s l"egulal”. infinity just doesn’t work this way where it
. neatly extends from the combination of a
 [.“- = LL is regular bunch of finite things.

« [° = L(LL) is regular

 Regular languages are closed under union.

* So the union of all these languages is
regular.



Idea: Can we directly convert an NFA for
language L to an NFA for language L*?



The Kleene Star

5 Oo

O

Machine for L




The Kleene Star

g 5 0O
0

Machine for L



The Kleene Star

g 5 0O
0

Machine for L



start

The Kleene Star

Machine for L



start

The Kleene Star

Machine for L



The Kleene Star

--------------------------------------------------
1 4 ~5
L 4

start O

'S DS
. e”
...............................................

Machine for L*



The Kleene Star

start

Question: Why add the new
state out front? Why not just
make the old start state
accepting?

4
----------------------------------

achine for L*

N NN BN BN BN BN BN BN BN B O amm

“a
AN N BN BN BN BN BN BN BN BN BN BN BN BN BN BN B B .



Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are
the following languages:

e 1
e [1 U L[>
e [1N Lo
e [1l.»
° Ll*
 These properties are called closure
properties of the regular languages.



Next Time

* Regular Expressions

* Building languages from the ground up!
« Thompson’s Algorithm

A UNIX Programmer in Theoryland.
 Kleene’s Theorem

« From machines to programs!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157

