

Finite Automata
Part Three

From Last Time

NFAs and DFAs

● DFAs (Deterministic Finite Automata)
● are machines for accepting/rejecting strings.
● The language of a DFA is the set of strings it

accepts.
● The set of languages for which there exists a

DFA is called the Regular Languages.
● NFAs (Nondeterministic Finite Automata)

● are DFAs but with some bonus superpowers of
having more options for how we move from
state to state.

New Stuff!

Table Representation of DFAs

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1
q0q1

1

q3

Since this is the first
row, it's the start

state.

Since this is the first
row, it's the start

state.

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1
q0q1

1

q3

Question:
What goes in the q1

row of the table?

Question:
What goes in the q1

row of the table?

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1
q0q1

q2q3

q0q3

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1
q0q1

q2q3

- -

q0q3

1

q3

q0

q1

q2

q3

0 1
q0q1

q2q3

q3 q3

q0q3

Σ
-

-

q3

-

(A) (B)

Question:
How should we

complete the table?
Go to

pollev.com/cs103spr25

Question:
How should we

complete the table?
Go to

pollev.com/cs103spr25

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

q0

q1

q2

q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

These stars indicate
accepting states.

These stars indicate
accepting states.

q3

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

q3

NFAs and DFAs

● We know that any language for which
there exists a DFA can also be recognized
by an NFA.

● Why?
● Every DFA is essentially already an NFA!

– (No requirement that a given NFA use every NFA
superpower available)

NFAs and DFAs

● We know that any language for which
there exists a DFA can also be recognized
by an NFA.

● Why?
● Every DFA is essentially already an NFA!

– (No requirement that a given NFA use every NFA
superpower available)

● Question: Can any language recognized
by an NFA also be recognized by a DFA?

NFAs and DFAs

● We know that any language for which
there exists a DFA can also be recognized
by an NFA.

● Why?
● Every DFA is essentially already an NFA!

– (No requirement that a given NFA use every NFA
superpower available)

● Question: Can any language recognized
by an NFA also be recognized by a DFA?

● Surprisingly, the answer is yes!

NFAs and DFAs

● Question: Can any language recognized by an NFA
also be recognized by a DFA?

● Surprisingly, the answer is yes!
● Theorem: For all languages L, if L is recognized by an

NFA, then there exists a DFA that also recognizes L.
● To prove this, we need to:

– Pick an arbitrary language L, assuming an NFA exists for L
– Want to show there exists a DFA for L (describe how we would

construct a DFA with the same language, in a generalizable way)
– For the next few slides, we’ll ponder how to approach that...

Thought Experiment:
How would you simulate an NFA in

software?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a b a ab

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

Key insight:
NFA works like a DFA, but “which state am I in right now?”
and “which states will I be in next given where I am right

now and which character I’m reading?” are questions
answered by a set of states, not a single state.

DFAs

● A DFA consists of:
● A set of states
● Exactly one element of the set of states designated as a

start state
– (as a consequence, the set of states must be nonempty)

● A subset of the states designated as accepting states
● An alphabet Σ
● A transition function that maps (state, character) ordered

pairs to states
– (i.e., for each state in the DFA, there must be exactly one

transition defined for each symbol in Σ)

Remember: For DFAs,
we said we could

formally define the
transitions (arrows) as
a function f : S x Σ → S.

(in other words, an
order pair of current

state and input
character (q, c) maps to
a destination state q’.

Remember: For DFAs,
we said we could

formally define the
transitions (arrows) as
a function f : S x Σ → S.

(in other words, an
order pair of current

state and input
character (q, c) maps to
a destination state q’.

Math notation note:
In f : S x Σ → S, the x

(cross product) means
“make ordered pairs

out of these two sets.”
So if S = {a, b} and T
= {1, 2}, S x T = …??

Go to
PollEv.com/cs103spr25

Math notation note:
In f : S x Σ → S, the x

(cross product) means
“make ordered pairs

out of these two sets.”
So if S = {a, b} and T
= {1, 2}, S x T = …??

Go to
PollEv.com/cs103spr25

DFAs

● A DFA consists of:
● A set of states
● Exactly one element of the set of states designated as a

start state
– (as a consequence, the set of states must be nonempty)

● A subset of the states designated as accepting states
● An alphabet Σ
● A transition function that maps (state, character) ordered

pairs to states
– (i.e., for each state in the DFA, there must be exactly one

transition defined for each symbol in Σ)

Remember: For DFAs,
we said we could

formally define the
transitions (arrows) as
a function f : S x Σ → S.

(in other words, an
order pair of current

state and input
character (q, c) maps to
a destination state q’.

Remember: For DFAs,
we said we could

formally define the
transitions (arrows) as
a function f : S x Σ → S.

(in other words, an
order pair of current

state and input
character (q, c) maps to
a destination state q’.

Math notation note:
In f : S x Σ → S, the x

(cross product) means
“make ordered pairs

out of these two sets.”
So if S = {a, b} and T

= {1, 2}, S x T =
{(a,1), (a,2), (b,1),

(b,2)}

Math notation note:
In f : S x Σ → S, the x

(cross product) means
“make ordered pairs

out of these two sets.”
So if S = {a, b} and T

= {1, 2}, S x T =
{(a,1), (a,2), (b,1),

(b,2)}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

a? ?? ?… ? ? ? …?

Key insight:
NFA works like a DFA, but “which state am I in right now?”
and “which states will I be in next given where I am right

now and which character I’m reading?” are questions
answered by a set of states, not a single state.

Remember: For DFAs,
we said we could

formally define the
transitions (arrows) as
a function f : S x Σ → S.

(in other words, an
order pair of current

state and input
character (q, c) maps to
a destination state q’.

Question:
How would we formally
define the transitions

for an NFA as a
function, given this

insight?
Go to

pollev.com/cs103spr25

Remember: For DFAs,
we said we could

formally define the
transitions (arrows) as
a function f : S x Σ → S.

(in other words, an
order pair of current

state and input
character (q, c) maps to
a destination state q’.

Question:
How would we formally
define the transitions

for an NFA as a
function, given this

insight?
Go to

pollev.com/cs103spr25

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

b

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

Quick check:
What are the contents

of the next row?
Answer like

“a = {..}, b = {...}”
all in one response.

Go to
PollEv.com/cs103spr25

Quick check:
What are the contents

of the next row?
Answer like

“a = {..}, b = {...}”
all in one response.

Go to
PollEv.com/cs103spr25

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

{q₀, q₂}

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

q₃q₃q₂q₁ q₂q₀ q₁q₀
start a b

Σ

a
q₃

{q₀} {q₀, q₁}

{q₀, q₂}

b

a

 b
a

 b

b

 a

start

{q₀, q₁, q₃}

a

a b a a b a

The Subset Construction

● This procedure for turning an NFA for a language L into a
DFA for a language L is called the subset construction.
● It’s sometimes called the powerset construction; it’s different

names for the same thing!
● Intuitively:

● Each state in the DFA corresponds to a set of states from the NFA.
● Each transition in the DFA corresponds to what transitions would

be taken in the NFA when using the massive parallel intuition.
● The accepting states in the DFA correspond to which sets of states

would be considered accepting in the NFA when using the massive
parallel intuition.

● There’s an online Guide to the Subset Construction with
a more elaborate example involving ε-transitions and cases
where the NFA dies; check that for more details.

The Subset Construction

● In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.
● Useful fact: |℘(S)| = 2|S| for any finite set S.

● So, in the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

● Question to ponder: Can you find a
family of languages that have NFAs of size
n, but no DFAs of size less than 2n?

Why This Matters

● We now have two perspectives on regular
languages:
● Regular languages are languages accepted

by DFAs.
● Regular languages are languages accepted

by NFAs.
● We can now reason about the regular

languages in two different ways.

Properties of Regular Languages

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

Machine for L1
start

start Machine for L2

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

start

start

start

Machine for L1

Machine for L2

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

start

ε

ε

Machine for L1

Machine for L2

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?

start

ε

ε

Machine for L1

Machine for L2Machine for
L1 ∪ L2

Question to
ponder: where have

you seen this idea
before?

Question to
ponder: where have

you seen this idea
before?

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

L1

The Intersection of Two Languages

L2

 L1 L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

 L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

L1 ∪ L2

The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2
regular as well?

Hey, it's De
Morgan's laws!

Hey, it's De
Morgan's laws!

Concatenation

String Concatenation

● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x,
denoted wx, is the string formed by tacking all the
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● This is analogous to the + operator for strings in many
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y

Concatenation

● The concatenation of two languages L₁
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by
concatenating a string in L₁ with a string in L₂.

The set of strings that can be split into two
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian
product of two sets, only with strings.

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider
these languages over Σ:

● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is

● { ThePuppyHugsTheWhale,
 TheWhaleLovesTheRainbow,
 TheRainbowJugglesTheRainbow, … }

Concatenation

● The concatenation of two languages L₁ and L₂
over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● Two views of L₁L₂:

● The set of all strings that can be made by concatenating
a string in L₁ with a string in L₂.

● The set of strings that can be split into two pieces: a
piece from L₁ and a piece from L₂.

This is closely related to, but different
than, the Cartesian product.

Question to ponder: In what ways are
concatenations similar to Cartesian

products? In what ways are they
different?

This is closely related to, but different
than, the Cartesian product.

Question to ponder: In what ways are
concatenations similar to Cartesian

products? In what ways are they
different?

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings xy
such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally hand the

rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split was
incorrect.

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings xy
such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally hand the

rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split was
incorrect.

Machine for L1

start start

Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings xy
such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally hand the

rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split was
incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings xy
such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally hand the

rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split was
incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings xy
such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally hand the

rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split was
incorrect.

start start

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings xy
such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally hand the

rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split was
incorrect.

Concatenating Regular Languages

Concatenating Regular Languages

start start

Machine for
L1

Concatenating Regular Languages

start start
start start

Machine for
L1

Machine for
L2

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Concatenating Regular Languages

start

ε

ε

ε

start

Machine for
L1

Machine for
L2

Machine for L1L2

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples of

strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can define what it means to “exponentiate” a language
as follows:

● L0 = {ε}
● Intuition: The only string you can form by gluing no strings

together is the empty string.
● Notice that {ε} ≠ Ø. Can you explain why?

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?

The Kleene Star

The Kleene Closure

● An important operation on languages is the
Kleene Closure, which is defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* ↔ ∃n ∈ ℕ. w ∈ Ln

● Intuitively, L* is the language all possible ways
of concatenating zero or more strings in L
together, possibly with repetition.

● Question to ponder: What is Ø*?

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you can

make if you have a collection of stamps –
one for each string in L – and you form
every possible string that can be made

from those stamps.

Think of L* as the set of strings you can
make if you have a collection of stamps –

one for each string in L – and you form
every possible string that can be made

from those stamps.

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is

regular.

We won’t get into the reasons why, but
infinity just doesn’t work this way where it
neatly extends from the combination of a

bunch of finite things.

We won’t get into the reasons why, but
infinity just doesn’t work this way where it
neatly extends from the combination of a

bunch of finite things.

Idea: Can we directly convert an NFA for
language L to an NFA for language L*?

The Kleene Star

start

Machine for L

The Kleene Star

εstart

Machine for L

The Kleene Star

εstart

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

The Kleene Star

εstart

ε

ε

Machine for L

Machine for L*

The Kleene Star

εstart

ε

ε

Machine for L

Machine for L*

Question: Why add the new
state out front? Why not just

make the old start state
accepting?

Question: Why add the new
state out front? Why not just

make the old start state
accepting?

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

Next Time

● Regular Expressions
● Building languages from the ground up!

● Thompson’s Algorithm
● A UNIX Programmer in Theoryland.

● Kleene’s Theorem
● From machines to programs!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157

