Finite Automata

Part Three



From Last Time



NFAs and DFAs

* DFAs (Deterministic Finite Automata)

* are machines for accepting/rejecting strings.

 The language of a DFA is the set of strings it
accepts.

* The set of languages for which there exists a
DFA is called the Regular Languages.

e NFAs (Nondeterministic Finite Automata)

« are DFAs but with some bonus superpowers of

having more options for how we move from
state to state.



New Stuff!



Table Representation of DFAs
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Since this is the first ql
row, it's the start
state.
qd,
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Question:
What goes in the q;, qO ql qO

row of the table?
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Tabular DFAs




NFAs and DFAs

« We know that any language for which
there exists a DFA can also be recognized
by an NFA.

« Why?

 Every DFA is essentially already an NFA!

- (No requirement that a given NFA use every NFA
superpower available)
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NFAs and DFAs

* Question: Can any language recognized by an NFA
also be recognized by a DFA?

* Surprisingly, the answer is yes!

 Theorem: For all languages L, if L is recognized by an
NFA, then there exists a DFA that also recognizes L.

« To prove this, we need to:

- Pick an arbitrary language L, assuming an NFA exists for L

- Want to show there exists a DFA for L (describe how we would
construct a DFA with the same language, in a generalizable way)

- For the next few slides, we’ll ponder how to approach that...



Thought Experiment:
How would you simulate an NFA in
software?





































































Key insight:

NFA works like a DFA, but “which state am I in right now?”
and “which states will I be in next given where I am right
now and which character I'm reading?” are questions
answered by a set of states, not a single state.
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D F.A.S Remember: For DFAs,

we said we could
formally define the

. : . transitions (arrows) as
A DFA consists of: a functionf: Sx 2 - S.
e A set of states (in other words, an
order pair of current
« Exactly one element of the set of states designated as state and input
start state character (g, ¢) maps to

a destination state q'.

- (as a consequence, the set of states must be nonempty)

* A subset of the states designated as accepting states e e e
+ An alphabet Inf: Sx 2 - S, the x
(cross product) means

« A transition function that maps (state, character) ordered "Taﬁhordeged paitrs
; out of these two sets.”
pairs to states S0 if S={a b} and T

- (i.e., for each state in the DFA, there must be exactly one ={1,2},SxT=..7?

transition defined for each symbol in X) Go to

PollEv.com/cs103spr25




DFAs

« A DFA consists of:

A set of states

Exactly one element of the set of states designated as
start state

- (as a consequence, the set of states must be nonempty)
A subset of the states designated as accepting states

An alphabet X

A transition function that maps (state, character) ordered

pairs to states

- (i.e., for each state in the DFA, there must be exactly one
transition defined for each symbol in %)

Remember: For DFAs,
we said we could
formally define the
transitions (arrows) as
a functionf: Sx z - S.
(in other words, an
order pair of current
state and input
character (g, ¢) maps to
a destination state q'.

(b,2)}

Math notation note:
INnf: Sx 2 - S, the x
(cross product) means
“make ordered pairs
out of these two sets.”
SoifS={a,b}and T
= {1, 2}, SXT=
{(a,1), (a,2), (b,1),



Remember: For DFAS,
we said we could
formally define the
transitions (arrows) as
a functionf: Sx 2 - S.
(in other words, an
order pair of current

Key inSight: state and input

NFA works like a DFA, but “which state am I in right now?” Cgadr:g;enrafc?(’)rf )Sgileo zt 0
and “which states will I be in next given where I am right '
now and which character I'm reading?” are questions
answered by a set of states, not a single state.

Question:
How would we formally
define the transitions
P P J J a J 9 9 9 for an NFA as a

function, given this

insight?
Go to
pollev.com/cs103spr25
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Quick check:
What are the contents
of the next row?

Answer like
“a={.},b={.}
all in one response.

Go to
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The Subset Construction

* This procedure for turning an NFA for a language L into a
DFA for a language L is called the subset construction.

« It’s sometimes called the powerset construction; it’s different
names for the same thing!
 Intuitively:
« Each state in the DFA corresponds to a set of states from the NFA.

 Each transition in the DFA corresponds to what transitions would
be taken in the NFA when using the massive parallel intuition.

 The accepting states in the DFA correspond to which sets of states
would be considered accepting in the NFA when using the massive
parallel intuition.

e There’s an online Guide to the Subset Construction with
a more elaborate example involving e-transitions and cases
where the NFA dies; check that for more details.



The Subset Construction

* In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

* Useful fact: |((S)| = 21sl for any finite set S.

* So, in the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

* Question to ponder: Can you find a
tamily of languages that have NFAs of size
n, but no DFAs of size less than 2n?



Why This Matters

« We now have two perspectives on regular
languages:

 Regular languages are languages accepted
by DFAs.

 Regular languages are languages accepted
by NFAs.

 We can now reason about the regular
languages in two different ways.



Properties of Regular Languages
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« If L, and L, are languages over the alphabet %, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L, U L,?
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The Union of Two Languages

« If L, and L, are languages over the alphabet X, the
language L, U L, is the language of all strings in at
least one of the two languages.

« If L, and L, are regular languages, is L; U L,?

s WEN EN EN 5N BN BN NN SN SN BN SN SN SN SN SN SN SN SN SN SN SN SN SN BN SN SN SN SN BN SN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B BN B O O
4 ~

Question to
ponder: where have
you seen this idea
before?

Machine for L,

start:

Machine for Machine for L,

L UL,

~~~~~~
----------------------------------------------------
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- If L. and L, are languages over X, then L, N L, is
the language of strings in both L, and L,.
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The Intersection of Two Languages

- If L. and L, are languages over X, then L, N L, is
the language of strings in both L, and L,.

e Question: If L, and L, are regular, is L, N L,
regular as well?

Hey, it's De
Morgan's laws!




Concatenation



String Concatenation

e [fw € 2* and x € X*, the concatenation of w and x,
denoted wkx, is the string formed by tacking all the
characters of x onto the end of w.

 Example: if w = quo and x = kka, the concatenation
wx = quokka.

« This is analogous to the + operator for strings in many
programming languages.
* Some facts about concatenation:
« The empty string ¢ is the identity element for concatenation:
WE =€Ew=W
 Concatenation is associative:
wxy = wxy) = (wx)y



Concatenation

 The concatenation of two languages L
and Lz over the alphabet X is the language

Lil={wx€X*¥|w€Li1AXx€ELz2}



Concatenation Example

e JletX={a,b, ..,z A B, .. Z} and consider
these languages over 2:

 Noun = { Puppy, Rainbow, Whale, ... }
* Verb = { Hugs, Juggles, Loves, ... }
* The = { The }
 The language TheNounVerbTheNoun is

* { ThePuppyHugsTheWhale,
TheWhaleLovesTheRainbow,
TheRainbowJugglesTheRainbow, ... }



Concatenation

 The concatenation of two languages L1 and Lz
over the alphabet X is the language

Lilz ={wx €X*|we€LiAx€Lz2}
» Two views of LiLz:

« The set of all strings that can be made by concatenating
a string in Li with a string in Lo.

* The set of strings that can be split into two pieces: a
piece from Li1 and a piece from L.

This is closely related to, but different
than, the Cartesian product.

Question to ponder: In what ways are
concatenations similar to Cartesian
products? In what ways are they
different?




Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings xy
such that x € L, and y € L,?
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Concatenating Regular Languages

« If L, and L, are regular languages, is L,L,?

 Intuition - can we split a string w into two strings xy
such that x € L, and y € L,?

» Idea:
« Run a DFA/NFA for L, on w.

« Whenever it reaches an accepting state, optionally hand the
rest of w to a DFA/NFA for L,.

« If the automaton for L, accepts the rest, w € LilLo.

« If the automaton for L, rejects the remainder, the split was
incorrect.



Concatenating Regular Languages



Concatenating Regular Languages

O

start @
O

Machine for
L

1



Concatenating Regular Languages

start _(%‘
start @

@ Machine for

L

Machine for ’

L

1



Concatenating Regular Languages

start z

Machme for
L

Machine for ’

L

1



Concatenating Regular Languages

o

‘ Machine for
L

Machine for ’

L

1



Concatenating Regular Languages
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[.ots and Lots of Concatenation

* Consider the language L = { aa, b }

« L is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL is the set of strings formed by concatenating triples of
strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

 LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

« We can define what it means to “exponentiate” a language
as follows:

e [ O = {g}

 Intuition: The only string you can form by gluing no strings
together is the empty string.

* Notice that {e} # 0. Can you explain why?
o [n+1l = [ [n

* Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question to ponder: Why define Lo = {&g}?
* Question to ponder: What is 0?



The Kleene Star



The Kleene Closure

 An important operation on languages is the
Kleene Closure, which is defined as

L*={we2X2* | dn € N.we€ Ln}
« Mathematically:
wE L* o dn € N. w € Ln

 Intuitively, L* is the language all possible ways
of concatenating zero or more strings in L
together, possibly with repetition.

* Question to ponder: What is J*?



The Kleene Closure

IfL ={a, bb}, then L* = {
€,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

} Think of L* as the set of strings you can
make if you have a collection of stamps -
one for each string in L - and you form
every possible string that can be made
from those stamps.




Reasoning about Infinity

» If L is regular, is L* necessarily regular?
« A A Bad Line of Reasoning: A\

e [ ={ ¢ } is regular.

1 . We won’t get into the reasons why, but
e ' =1L1s l"egulal”. infinity just doesn’t work this way where it
. neatly extends from the combination of a
 [.“- = LL is regular bunch of finite things.

« [° = L(LL) is regular

 Regular languages are closed under union.

* So the union of all these languages is
regular.



Idea: Can we directly convert an NFA for
language L to an NFA for language L*?
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The Kleene Star

start

Question: Why add the new
state out front? Why not just
make the old start state
accepting?
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Closure Properties

« Theorem: If L. and L2 are regular
languages over an alphabet X, then so are
the following languages:

e 1
e [1 U L[>
e [1N Lo
e [1l.»
° Ll*
 These properties are called closure
properties of the regular languages.



Next Time

* Regular Expressions

* Building languages from the ground up!
« Thompson’s Algorithm

A UNIX Programmer in Theoryland.
 Kleene’s Theorem

« From machines to programs!
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