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NFAs and DFAs

● DFAs (Deterministic Finite Automata) 
● are machines for accepting/rejecting strings.
● The language of a DFA is the set of strings it 

accepts.
● The set of languages for which there exists a 

DFA is called the Regular Languages. 
● NFAs (Nondeterministic Finite Automata)

● are DFAs but with some bonus superpowers of 
having more options for how we move from 
state to state.



  

New Stuff!



  

Table Representation of DFAs
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NFAs and DFAs

● We know that any language for which 
there exists a DFA can also be recognized 
by an NFA.

● Why?
● Every DFA is essentially already an NFA!

– (No requirement that a given NFA use every NFA 
superpower available)
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NFAs and DFAs

● Question: Can any language recognized by an NFA 
also be recognized by a DFA?

● Surprisingly, the answer is yes!
● Theorem: For all languages L, if L is recognized by an 

NFA, then there exists a DFA that also recognizes L.
● To prove this, we need to:

– Pick an arbitrary language L, assuming an NFA exists for L
– Want to show there exists a DFA for L (describe how we would 

construct a DFA with the same language, in a generalizable way)
– For the next few slides, we’ll ponder how to approach that...



  

Thought Experiment:
How would you simulate an NFA in 

software?
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Key insight:
NFA works like a DFA, but “which state am I in right now?” 
and “which states will I be in next given where I am right 

now and which character I’m reading?” are questions 
answered by a set of states, not a single state.



  

DFAs

● A DFA consists of:
● A set of states
● Exactly one element of the set of states designated as a 

start state
– (as a consequence, the set of states must be nonempty)

● A subset of the states designated as accepting states
● An alphabet Σ
● A transition function that maps (state, character) ordered 

pairs to states 
– (i.e., for each state in the DFA, there must be exactly one 

transition defined for each symbol in Σ) 

Remember: For DFAs, 
we said we could 

formally define the 
transitions (arrows) as 
a function f : S x Σ → S. 

(in other words, an 
order pair of current 

state and input 
character (q, c) maps to 
a destination state q’.

Remember: For DFAs, 
we said we could 

formally define the 
transitions (arrows) as 
a function f : S x Σ → S. 

(in other words, an 
order pair of current 

state and input 
character (q, c) maps to 
a destination state q’.

Math notation note: 
In f : S x Σ → S, the x 

(cross product) means 
“make ordered pairs 

out of these two sets.” 
So if S = {a, b} and T  
= {1, 2}, S x T = …??

Go to 
PollEv.com/cs103spr25
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● An alphabet Σ
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state and input 
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(cross product) means 
“make ordered pairs 
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So if S = {a, b} and T  

= {1, 2}, S x T = 
{(a,1), (a,2), (b,1), 

(b,2)} 

Math notation note: 
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“make ordered pairs 
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So if S = {a, b} and T  
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The Subset Construction

● This procedure for turning an NFA for a language L into a 
DFA for a language L is called the subset construction.
● It’s sometimes called the powerset construction; it’s different 

names for the same thing!
● Intuitively:

● Each state in the DFA corresponds to a set of states from the NFA.
● Each transition in the DFA corresponds to what transitions would 

be taken in the NFA when using the massive parallel intuition.
● The accepting states in the DFA correspond to which sets of states 

would be considered accepting in the NFA when using the massive 
parallel intuition.

● There’s an online Guide to the Subset Construction with 
a more elaborate example involving ε-transitions and cases 
where the NFA dies; check that for more details.



  

The Subset Construction

● In converting an NFA to a DFA, the DFA's 
states correspond to sets of NFA states.
● Useful fact: |℘(S)| = 2|S| for any finite set S.

● So, in the worst-case, the construction can 
result in a DFA that is exponentially larger 
than the original NFA.

● Question to ponder: Can you find a 
family of languages that have NFAs of size 
n, but no DFAs of size less than 2n?



  

Why This Matters

● We now have two perspectives on regular 
languages:
● Regular languages are languages accepted 

by DFAs.
● Regular languages are languages accepted 

by NFAs.
● We can now reason about the regular 

languages in two different ways.



  

Properties of Regular Languages



  

The Union of Two Languages

● If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at 
least one of the two languages.

● If L1 and L2 are regular languages, is L1 ∪ L2?
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The Intersection of Two Languages

● If L1 and L2 are languages over Σ, then L1 ∩ L2 is 
the language of strings in both L1 and L2.

● Question: If L1 and L2 are regular, is L1 ∩ L2 
regular as well?
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Concatenation



  

String Concatenation

● If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x, 
denoted wx, is the string formed by tacking all the 
characters of x onto the end of w.

● Example: if w = quo and x = kka, the concatenation
wx = quokka.

● This is analogous to the + operator for strings in many 
programming languages.

● Some facts about concatenation:
● The empty string ε is the identity element for concatenation:

wε = εw = w
● Concatenation is associative:

wxy = w(xy) = (wx)y



  

Concatenation

● The concatenation of two languages L₁ 
and L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by 
concatenating a string in L₁ with a string in L₂. 

The set of strings that can be split into two 
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian 
product of two sets, only with strings.



  

Concatenation Example

● Let Σ = { a, b, …, z, A, B, …, Z } and consider 
these languages over Σ:

● Noun = { Puppy, Rainbow, Whale, … }

● Verb = { Hugs, Juggles, Loves, … }

● The = { The }

● The language TheNounVerbTheNoun is

● { ThePuppyHugsTheWhale,
   TheWhaleLovesTheRainbow,
   TheRainbowJugglesTheRainbow, … }



  

Concatenation

● The concatenation of two languages L₁ and L₂ 
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Question to ponder: In what ways are 
concatenations similar to Cartesian 

products? In what ways are they 
different?
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Concatenating Regular Languages

● If L1 and L2 are regular languages, is L1L2?

● Intuition – can we split a string w into two strings xy 
such that x ∈ L1 and y ∈ L2?

● Idea:
● Run a DFA/NFA for L1 on w.
● Whenever it reaches an accepting state, optionally hand the 

rest of w to a DFA/NFA for L2.

● If the automaton for L2 accepts the rest, w ∈ L₁L₂.

● If the automaton for L2 rejects the remainder, the split was 
incorrect.
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Concatenating Regular Languages
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Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples of 

strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can define what it means to “exponentiate” a language 
as follows:

● L0 = {ε}
● Intuition: The only string you can form by gluing no strings 

together is the empty string.
● Notice that {ε} ≠ Ø. Can you explain why?

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one more.

● Question to ponder: Why define L0 = {ε}?
● Question to ponder: What is Ø0?



  

The Kleene Star



  

The Kleene Closure

● An important operation on languages is the 
Kleene Closure, which is defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     ↔     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, L* is the language all possible ways 
of concatenating zero or more strings in L 
together, possibly with repetition.

● Question to ponder: What is Ø*?



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings you can 

make if you have a collection of stamps – 
one for each string in L – and you form 
every possible string that can be made 

from those stamps.

Think of L* as the set of strings you can 
make if you have a collection of stamps – 

one for each string in L – and you form 
every possible string that can be made 

from those stamps.



  

Reasoning about Infinity

● If L is regular, is L* necessarily regular?
● ⚠ A Bad Line of Reasoning: ⚠

● L0 = { ε } is regular.
● L1 = L is regular.
● L2 = LL is regular
● L3 = L(LL) is regular
● …
● Regular languages are closed under union.
● So the union of all these languages is 

regular.

We won’t get into the reasons why, but 
infinity just doesn’t work this way where it 
neatly extends from the combination of a 

bunch of finite things.

We won’t get into the reasons why, but 
infinity just doesn’t work this way where it 
neatly extends from the combination of a 

bunch of finite things.



  

Idea: Can we directly convert an NFA for 
language L to an NFA for language L*?



  

The Kleene Star

start    

Machine for L



  

The Kleene Star

εstart    

Machine for L
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The Kleene Star

εstart    

ε

ε

Machine for L
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εstart    
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Machine for L



  

The Kleene Star

εstart    

ε

ε

Machine for L

Machine for L*



  

The Kleene Star

εstart    

ε

ε

Machine for L

Machine for L*

Question: Why add the new 
state out front? Why not just 

make the old start state 
accepting?

Question: Why add the new 
state out front? Why not just 

make the old start state 
accepting?



  

Closure Properties

● Theorem: If L₁ and L₂ are regular 
languages over an alphabet Σ, then so are 
the following languages:
● L₁ 
● L₁ ∪ L₂ 
● L₁ ∩ L₂ 
● L₁L₂
● L₁*

● These properties are called closure 
properties of the regular languages.

 



  

Next Time

● Regular Expressions
● Building languages from the ground up!

● Thompson’s Algorithm
● A UNIX Programmer in Theoryland.

● Kleene’s Theorem
● From machines to programs!
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